Obtaining capillary pressure drainage curves for carbonate rocks through the centrifuge method

2020 ◽  
Vol 20 (2020) ◽  
pp. 80-81
Author(s):  
Ana Luisa de Medeiros Costa ◽  
Nathália Pereira Dias ◽  
Natália Patto Barbosa Quintão ◽  
Paulo Couto
2019 ◽  
Vol 200 ◽  
pp. 268-284 ◽  
Author(s):  
Sayed Alireza Hosseinzadeh Hejazi ◽  
Saurabh Shah ◽  
Ronny Pini

2005 ◽  
Vol 8 (06) ◽  
pp. 460-469 ◽  
Author(s):  
Mehdi M. Honarpour ◽  
Nizar F. Djabbarah ◽  
Krishnaswamy Sampath

Summary Whole-core analysis is critical for characterizing directional permeability in heterogeneous, fractured, and/or anisotropic rocks. Whole-core measurements are essential for heterogeneous reservoirs because small-scale heterogeneity may not be appropriately represented in plug measurements. For characterization of multiphase-flow properties (special core analysis) in heterogeneous rocks, whole-core analysis is also required. Few commercial laboratories are equipped to conduct routine measurements on whole cores up to 4 in. in diameter and up to 8 in. long and, importantly, under simulated reservoir net confining stress (NCS). Special whole-core analyses are rarely conducted because of the difficulties associated with establishing a representative water saturation in drainage capillary pressure experiments and measuring directional effective permeabilities. Electrical properties also can be measured on whole cores to determine porosity and saturation exponents for situations in which resistivity tools are used in horizontal or highly deviated wells. In this paper, we provide an overview of routine and special core-analysis measurements on whole cores. Results from selected heterogeneous sandstone and carbonate rocks will be discussed. We also will show how the results relate to data obtained from plug analysis, with particular emphasis on directional absolute permeability, trapped-gas and fluid saturations, and the effect of NCS. Finally, we will describe a novel apparatus for special core analysis on whole cores and provide examples of the capabilities of the system. In this paper, we will present:• Recommended techniques for the determination of directional absolute and effective permeability and for establishing initial water saturation in whole cores.• Improved understanding of the effect of scale (sample size) on the measured properties.• Description of a novel whole-core apparatus with measurement of fluid-saturation distribution using in-situ saturation monitoring. Introduction Reservoir rocks are heterogeneous, especially carbonate rocks, in which more than 50% of the world's hydrocarbon reserves are deposited. Fig. 1 shows an example of variability in rock characteristics as observed in a carbonate-rockout crop in Oman. The heterogeneous nature of these rocks tends to become more apparent as attempts are made to measure their petrophyscal properties at various scales. An example of permeability variation in a plug from a carbonate formation is shown in Fig. 2. Single-phase air permeability varies by three orders of magnitude over the distance of a few centimeters in this core plug. This dual-porosity behavior impacts the spontaneous-imbibition performance significantly (Fig. 3). Technology at Commercial Laboratories Selected commercial laboratories have capabilities to appropriately clean and prepare whole cores, perform core X-ray imaging, and measure basic properties such as directional permeability and porosity under a maximum confining stress of 5,000 psi. Available technologies for imaging, sample preparation, and routine core analysis are summarized in the following sections. Special-core-analysis capabilities at commercial laboratories are rare. Only one or two laboratories are capable of measuring primary-drainage gas/water capillary pressure and gas/water or oil/water electrical properties on whole cores at confining stress. Whole-Core Imaging and Screening Whole-core photography and X-ray imaging provide information about surface features and internal structure. The computed tomography (CT) scan provides evidence of fractures, vugs, and heterogeneities as indicated by the extent in the variation of CT density. X-ray fluoroscopy and CT are two of the most practical X-ray scanning techniques used to characterize core-level heterogenieties and to explain their effect on horizontal and vertical permeabilities. CT-scanning algorithms should often be modified to obtain images free of artifacts and with better than0.5-mm horizontal and 1-mm vertical resolutions.


AIChE Journal ◽  
1989 ◽  
Vol 35 (3) ◽  
pp. 365-372 ◽  
Author(s):  
K. G. Ayappa ◽  
H. T. Davis ◽  
E. A. Davis ◽  
J. Gordon

SPE Journal ◽  
2015 ◽  
Vol 20 (05) ◽  
pp. 1154-1166 ◽  
Author(s):  
Emad W. Al-Shalabi ◽  
Kamy Sepehrnoori ◽  
Mojdeh Delshad ◽  
Gary Pope

Summary There are few low-salinity-water-injection (LSWI) models proposed for carbonate rocks, mainly because of incomplete understanding of complex chemical interactions of rock/oil/brine. This paper describes a new empirical method to model the LSWI effect on oil recovery from carbonate rocks, on the basis of the history matching and validation of recently published corefloods. In this model, the changes in the oil relative permeability curve and residual oil saturation as a result of the LSWI effect are considered. The water relative permeability parameters are assumed constant, which is a relatively fair assumption on the basis of history matching of coreflood data. The capillary pressure is neglected because we assumed several capillary pressure curves in our simulations in which it had a negligible effect on the history-match results. The proposed model is implemented in the UTCHEM simulator, which is a 3D multiphase flow, transport, and chemical-flooding simulator developed at The University of Texas at Austin (UTCHEM 2000), to match and predict the multiple cycles of low-salinity experiments. The screening criteria for using the proposed LSWI model are addressed in the paper. The developed model gives more insight into the oil-production potential of future waterflood projects with a modified water composition for injection.


1999 ◽  
Vol 2 (02) ◽  
pp. 141-148 ◽  
Author(s):  
J.V. Nørgaard ◽  
Dan Olsen ◽  
Jan Reffstrup ◽  
Niels Springer

Summary A new technique for obtaining water-oil capillary pressure curves, based on nuclear magnetic resonance (NMR) imaging of the saturation distribution in flooded cores is presented. In this technique, a steady-state fluid saturation profile is developed by flooding the core at a constant flow rate. At the steady-state situation where the saturation distribution no longer changes, the local pressure difference between the wetting and nonwetting phases represents the capillary pressure. The saturation profile is measured using an NMR technique and for a drainage case, the pressure in the nonwetting phase is calculated numerically. This paper presents the NMR technique and the procedure for calculating the pressure distribution in the sample. Inhomogeneous samples produce irregular saturation profiles, which may be interpreted in terms of variation in permeability, porosity, and capillary pressure. Capillary pressure curves for North Sea chalk obtained by the new technique show good agreement with capillary pressure curves obtained by traditional techniques. Introduction Accurate petrophysical properties of reservoir rock such as capillary pressure, permeability, and relative permeability functions are essential as input for reliable oil in place estimations and for the prediction of the reservoir performance. Traditional methods for capillary pressure measurements are the mercury injection method, the diaphragm method, and the centrifuge method. In the mercury injection method,1 the nonwetting phase is mercury which displaces a gas. The samples are usually evacuated to a low pressure and Hg is then injected in steps allowing for pressure equilibrium at each step, or alternatively Hg is continuously injected. Corresponding data on injected volume of Hg and the injection pressure are recorded. This technique is widely used for measuring capillary pressure functions for low permeability rocks. This is primarily because it is generally believed that pressure equilibrium in each pressure step is readily obtained, while this is normally a problem for other methods where a liquid is the wetting phase. The disadvantage of this technique is the uncertainty in the scaling of the measured data to reservoir fluid data and conditions. In the diaphragm method or porous plate method, the problem concerning the scaling of the measured data is avoided, since this technique allows for the direct use of reservoir fluids. A water saturated sample is placed on a water-wet diaphragm to impose a boundary condition pc=0 to the wetting phase, i.e., the wetting phase is allowed to drain through the outlet end of the sample, at the same time as the nonwetting phase (oil or gas) is impeded. Pressure is added to the nonwetting phase and through a limited number of pressure steps, the capillary pressure curve is recorded. However, an important requirement is that equilibrium is obtained at each pressure step. This is the major problem when the diaphragm method is used on microporous materials. The drainage time may be considerable for each step, e.g., several weeks. In recent studies, thin micropore membranes have been used in an attempt to reduce the experimental time.2 Such a reduction will be less pronounced for low permeability rocks such as chalk since the flow resistance in the core is relatively more important. In the centrifuge method, the amount of liquid produced from the outlet end of the plug sample at a certain spin rate is read directly from a measuring tube during rotation. From the geometry of the centrifuge, the spin rate and the average fluid saturation in the plug, it is possible to calculate the capillary pressure relative to the inlet end of the sample.3 However, a number of assumptions must be made3,4: the sample must be homogeneous and have a well-defined outlet pressure boundary condition, i.e., condition pc=0, and drainage equilibrium must be established at each spin rate. Most of these conditions can only be approximated in practice. For the centrifuge method, the condition of drainage equilibrium may be questionable even for sandstone samples.5 Slobod6 reported that equilibrium had not been attained for a 2 mD sample after 20 hr of spinning. King7 concluded that low permeability rock samples may suffer from very long equilibrium times. After 10 days of spinning in the centrifuge, a Berea sandstone sample of 200 mD had just reached equilibrium. The objective of the development of the method presented here has been to avoid some of the disadvantages of the conventional methods described above. In this method a capillary pressure curve is obtained from a measured saturation profile after flooding the core. A similar experimental procedure was used by Richardson et al.8 to study end effects associated with flooding processes. The technique described here can be used with reservoir fluids. There is no porous plate to increase the flow resistance and the measurement of the capillary pressure function can be an integrated part of traditional flooding processes as performed with, e.g., unsteady-state relative permeability measurements. Only a very limited number of steps are needed, in principle only one step is required, therefore the time requirement for obtaining drainage equilibrium has not proved to be a problem. The technique utilizes the unavoidable end effect present in experiments with low permeability rocks. The capillary pressure function is obtained from the steady-state saturation profile in the core at drainage equilibrium.


Sign in / Sign up

Export Citation Format

Share Document