scholarly journals Stimulation of the Liver Regeneration with Bone Marrow Mesenchymal Stem Cells

2021 ◽  
Vol 24 (5) ◽  
pp. 9-18
Author(s):  
Martina Vidová Uğurbaş ◽  
Jana Kaťuchová ◽  
Darina Petrášová ◽  
Timea Špaková ◽  
Jozef Radoňak

The main objective of our experiment was to prove the effect of mesenchymal stem cells of bone marrow (MSCs) on the stimulation of liver regeneration. The attention has been paid to adaptation of stem cells to the new environment and their transfer to anatomical structures. The experiment included 40 male Sprague Dawley (SD) rats aged 10 to 12 weeks. Biomodels were divided into five groups in the same number (n=8). Group 1 consisted of a control sample of eight healthy rats. Group 2 consisted of eight rats after liver resection without application of MSCs. Group 3 was after liver resection and application of MSCs. Group 4 after liver injury induce with Thioacetamide (TAA), without transplantation of MSCs. Group 5 was after chemical damage to the liver by TAA administration and MSCs transplantation. The process of stimulation of the liver was observed based on the laboratory values of alanine aminotransferase (ALT), albumin and bilirubin. The weight of the rats in each group was also compared. Animals were sacrificed after 1 day, 7 days, 14 days, and 21 days. In our experiment we found a statistically significant decrease in ALT (P≤0.001) and bilirubin (P≤0.001) was observed in the groups 3 and 5 (treated with MSCs) compared to the groups without MSCs (Groups 2 and 4). The increase in the albumin levels in the groups 3 and 5 was statistically significant. The results of our experiment led us to the conclusion, the transplantation of MSCs has important effect for the treatment and stimulation of liver regeneration following injury. MSCs administration may be extremely useful in a number of clinical applications in the treatment of liver tumors. It will allow us to perform extensive resection of the liver without risk of liver failure

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shuangyue Li ◽  
Huai Guan ◽  
Yan Zhang ◽  
Sheng Li ◽  
Kaixin Li ◽  
...  

Abstract Background N-hexane, with its metabolite 2,5-hexanedine (HD), is an industrial hazardous material. Chronic hexane exposure causes segmental demyelination in the peripheral nerves, and high-dose intoxication may also affect central nervous system. Demyelinating conditions are difficult to treat and stem cell therapy using bone marrow mesenchymal stem cells (BMSCs) is a promising novel strategy. Our previous study found that BMSCs promoted motor function recovery in rats modeling hexane neurotoxicity. This work aimed to explore the underlying mechanisms and focused on the changes in spinal cord. Methods Sprague Dawley rats were intoxicated with HD (400 mg/kg/day, i.p, for 5 weeks). A bolus of BMSCs (5 × 107 cells/kg) was injected via tail vein. Demyelination and remyelination of the spinal cord before and after BMSC treatment were examined microscopically. Cultured oligodendrocyte progenitor cells (OPCs) were incubated with HD ± BMSC-derived conditional medium (BMSC-CM). OPC differentiation was studied by immunostaining and morphometric analysis. The expressional changes of Hes1, a transcription factor negatively regulating OPC-differentiation, were studied. The upstream Notch1 and TNFα/RelB pathways were studied, and some key signaling molecules were measured. The correlation between neurotrophin NGF and TNFα was also investigated. Statistical significance was evaluated using one-way ANOVA and performed using SPSS 13.0. Results  The demyelinating damage by HD and remyelination by BMSCs were evidenced by electron microscopy, LFB staining and NG2/MBP immunohistochemistry. In vitro cultured OPCs showed more differentiation after incubation with BMSC-CM. Hes1 expression was found to be significantly increased by HD and decreased by BMSC or BMSC-CM. The change of Hes1 was found, however, independent of Notch1 activation, but dependent on TNFα/RelB signaling. HD was found to increase TNFα, RelB and Hes1 expression, and BMSCs were found to have the opposite effect. Addition of recombinant TNFα to OPCs or RelB overexpression similarly caused upregulation of Hes1 expression. The secretion of NGF by BMSC and activation of NGF receptor was found important for suppression of TNFα production in OPCs. Conclusions  Our findings demonstrated that BMSCs promote remyelination in the spinal cord of HD-exposed rats via TNFα/RelB-Hes1 pathway, providing novel insights for evaluating and further exploring the therapeutical effect of BMSCs on demyelinating neurodegenerative disease.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Tong Wang ◽  
Wanchun Tang ◽  
Shijie Sun ◽  
Min-shan Tsai ◽  
Max Harry Weil

Background: In settings of heart failure, infusion of bone marrow mesenchymal stem cells (MSCs) improves myocardial function both in experimental and clinical studies. The mechanism by which MSCs improve myocardial function remains unknown. Hypothesis: MSCs may differentiate into beating myocytes in vivo. The contractility of these cells is comparable with those of myocytes. Methods: A thoracotomy was performed in 10 male Sprague-Dawley rats, weighing 350 – 450g. Myocardial infarction was induced by ligation of the left anterior descending artery (LAD). One week later, animals were randomized to receive 5×10 6 MSCs marked with PKH26 in phosphate buffer solution (PBS) or as a PBS bolus injection into local infarcted myocardium. Six weeks after the MSCs or PBS injection, the hearts were harvested and digested with collagease type II and single cardiomyocytes were obtained. PKH26 labeled myocytes differentiating from MSCs were observed with a microscope Olympus I×71. The contractility of labeled and unlabeled beating cells in MSCs-treated animals was compared. The contractility of unlabeled myocytes was compared between MSCs-treated and control groups. Result: The beating fluorescent labeled myocytes can be found in MSCs-treated animals [(1.2±0.4) ×10 6 ] and contractility of these cells were the same as that of unlabeled beating myocytes (Table 1 ). The contractility of unlabeled myocytes, however, was significantly better in MSCs-treated animals. Conclusion: MSCs could differentiate into the beating myocytes. However, this may not be the sole mechanism of improved myocardial function. Table 1 Cells contractility (%)


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Noridzzaida Ridzuan ◽  
Akram Al Abbar ◽  
Wai Kien Yip ◽  
Maryam Maqbool ◽  
Rajesh Ramasamy

The present study is aimed at optimizing the in vitro culture protocol for generation of rat bone marrow- (BM-) derived mesenchymal stem cells (MSCs) and characterizing the culture-mediated cellular senescence. The initial phase of generation and characterization was conducted using the adherent cells from Sprague Dawley (SD) rat’s BM via morphological analysis, growth kinetics, colony forming unit capacity, immunophenotyping, and mesodermal lineage differentiation. Mesenchymal stem cells were successfully generated and characterized as delineated by the expressions of CD90.1, CD44H, CD29, and CD71 and lack of CD11b/c and CD45 markers. Upon induction, rBM-MSCs differentiated into osteocytes and adipocytes and expressed osteocytes and adipocytes genes. However, a decline in cell growth was observed at passage 4 onwards and it was further deciphered through apoptosis, cell cycle, and senescence assays. Despite the enhanced cell viability at later passages (P4-5), the expression of senescence marker,β-galactosidase, was significantly increased at passage 5. Furthermore, the cell cycle analysis has confirmed the in vitro culture-mediated cellular senescence where cells were arrested at the G0/G1phase of cell cycle. Although the currently optimized protocols had successfully yielded rBM-MSCs, the culture-mediated cellular senescence limits the growth of rBM-MSCs and its potential use in rat-based MSC research.


2021 ◽  
Author(s):  
Shuangyue Li ◽  
Huai Guan ◽  
Yan Zhang ◽  
Sheng Li ◽  
Kaixin Li ◽  
...  

Abstract Background: N-hexane, with its metabolite 2,5-hexanedine (HD), is a hazardous material widely used in industry and chronic exposure causes nerve demyelination. Demyelinating conditions are difficult to treat and frequently cause disabilities. Stem cell therapy using bone marrow mesenchymal stem cells (BMSCs) is a promising novel strategy. Our previous study found that BMSCs promoted significant recovery of motor dysfunction in rats modelling N-hexane neurotoxicity. The present study aimed to explore the underlying mechanisms and focused on the changes in spinal cord. Methods: Sprague Dawley rats were intoxicated with HD (400 mg/kg/day, i.p, for 5 weeks). BMSCs (5×107cells/kg) were administrated by tail vein injection. Demyelination and remyelination of the spinal cord before and after BMSC treatment were examined microscopically. Cultured oligodendrocyte progenitor cells (OPCs) were incubated with HD +/- BMSCs-derived conditional medium (BMSC-CM). OPC differentiation was studied by immunostaining and quantitative imaging analysis. The expressional changes of Hes1, a key transcription factor negatively regulating OPC-differentiation, were studied. The upstream Notch1 and TNFα/RelB pathways were studied and some key signaling molecules in these pathways were measured. The correlation between neurotrophin NGF and TNFα was also investigated. Statistical significance was evaluated using one-way ANOVA test and performed using SPSS 13.0. Results: The demyelinating damage by HD and remyelination by BMSCs were evidenced by electron microscopy, LFB staining and NG2/MBP immunohistochemistry. In vitro cultured OPCs showed more differentiation after incubation with BMSC-CM. Hes1 expression was found to be significantly increased by HD and decreased by BMSC or BMSC-CM. The change of Hes1 was found, however, independent on Notch1 activation, but dependent on TNFα/RelB signaling. HD was found to increase TNFα, RelB and Hes1 expression and BMSCs was found to have the opposite effect. Addition of recombinant TNFα to OPCs or RelB overexpression similarly caused upregulation of Hes1 expression. The secretion of NGF by BMSC and activation of NGF receptor was found important for suppression of TNFα production in OPCs. Conclusions: Our findings demonstrated that BMSCs promote remyelination in the spinal cord of HD-exposed rats via TNFα/RelB-Hes1 pathway, providing novel insights for evaluating and further exploring the therapeutical effect of BMSCs on demyelinating neurodegenerative disease.


2018 ◽  
Vol 23 (01) ◽  
pp. 47-57 ◽  
Author(s):  
Wei Le ◽  
Andre Eu-Jin Cheah ◽  
Jeffrey Yao

Background: To investigate the effect of myostatin (GDF-8) stimulation of bone marrow derived mesenchymal stem cells (BMSCs) on tenogenesis in the setting of tendon repair. GDF-8 has demonstrated the ability to augment tenogenesis and we sought to identify if this effect could lead to the focused differentiation of pluripotential stem cells down a tenocyte lineage ex vivo.Methods: Cadaveric upper limb flexor tendons were harvested, decellularized and divided into 1 cm segments. Sutures seeded with stem cells were passed through tendon segments to simulate repair. The repaired tendons were then cultured either with or without myostatin for 3, 5, and 7 days. The experiment was also repeated with non-decellularized tendons for a total of 4 groups. The tendons were then evaluated for the expression of scleraxis and tenomodulin, two biomarkers for tendon.Results: Myostatin stimulation led to an increase in expression of tenomodulin and scleraxis at 5 and 7 days in both the decellularized and non-decellularized tendons. Myostatin increased the differentiation of BMSCs into tenocytes and/or led to the upregulation of tenomodulin and scleraxis production by the native tenocytes present within the non-decellularized tendons.Conclusions: The addition of myostatin to BMSCs leads to tenocyte differentiation as evidenced by the expression of tenocyte biomarkers, scleraxis and tenomodulin. This effect is maintained in an ex vivo tendon repair model suggestive that these cells survive the passage through tendon tissue and remain metabolically active.


Sign in / Sign up

Export Citation Format

Share Document