scholarly journals An Enhanced Genetic Algorithm for the Generalized Traveling Salesman Problem

2017 ◽  
Vol 7 (6) ◽  
pp. 2260-2265 ◽  
Author(s):  
H. Jafarzadeh ◽  
N. Moradinasab ◽  
M. Elyasi

The generalized traveling salesman problem (GTSP) deals with finding the minimum-cost tour in a clustered set of cities. In this problem, the traveler is interested in finding the best path that goes through all clusters. As this problem is NP-hard, implementing a metaheuristic algorithm to solve the large scale problems is inevitable. The performance of these algorithms can be intensively promoted by other heuristic algorithms. In this study, a search method is developed that improves the quality of the solutions and competition time considerably in comparison with Genetic Algorithm. In the proposed algorithm, the genetic algorithms with the Nearest Neighbor Search (NNS) are combined and a heuristic mutation operator is applied. According to the experimental results on a set of standard test problems with symmetric distances, the proposed algorithm finds the best solutions in most cases with the least computational time. The proposed algorithm is highly competitive with the published until now algorithms in both solution quality and running time.

2015 ◽  
Vol 2 (2) ◽  
pp. 57-61
Author(s):  
Petr Váňa ◽  
Jan Faigl

In this paper, we address the problem of path planning to visit a set of regions by Dubins vehicle, which is also known as the Dubins Traveling Salesman Problem Neighborhoods (DTSPN). We propose a modification of the existing sampling-based approach to determine increasing number of samples per goal region and thus improve the solution quality if a more computational time is available. The proposed modification of the sampling-based algorithm has been compared with performance of existing approaches for the DTSPN and results of the quality of the found solutions and the required computational time are presented in the paper.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Pengzhen Du ◽  
Ning Liu ◽  
Haofeng Zhang ◽  
Jianfeng Lu

The traveling salesman problem (TSP) is a typical combinatorial optimization problem, which is often applied to sensor placement, path planning, etc. In this paper, an improved ACO algorithm based on an adaptive heuristic factor (AHACO) is proposed to deal with the TSP. In the AHACO, three main improvements are proposed to improve the performance of the algorithm. First, the k-means algorithm is introduced to classify cities. The AHACO provides different movement strategies for different city classes, which improves the diversity of the population and improves the search ability of the algorithm. A modified 2-opt local optimizer is proposed to further tune the solution. Finally, a mechanism to jump out of the local optimum is introduced to avoid the stagnation of the algorithm. The proposed algorithm is tested in numerical experiments using 39 TSP instances, and results shows that the solution quality of the AHACO is 83.33% higher than that of the comparison algorithms on average. For large-scale TSP instances, the algorithm is also far better than the comparison algorithms.


2017 ◽  
Vol 05 (02) ◽  
pp. 79-95 ◽  
Author(s):  
Armin Sadeghi ◽  
Stephen L. Smith

This paper focuses on decentralized task allocation and sequencing for multiple heterogeneous robots. Each task is defined as visiting a point in a subset of the robot configuration space — this definition captures a variety of tasks including inspection and servicing. The robots are heterogeneous in that they may be subject to different differential motion constraints. Our approach is to transform the problem into a multi-vehicle generalized traveling salesman problem (GTSP). To solve the GTSP, we propose a novel decentralized implementation of large-neighborhood search (LNS). Our solution approach leverages the GTSP insertion methods proposed in Fischetti et al. [A branch-and-cut algorithm for the symmetric generalized traveling salesman problem, Oper. Res. 45(3) (1997) 378–394]. to repeatedly remove and reinsert tasks from each robot path. Decentralization is achieved using combinatorial-auctions between the robots on tasks removed from robot’s path. We provide bounds on the length of the dynamically feasible robot paths produced by the insertion methods. We also show that the number of bids in each combinatorial auction, a crucial factor in the runtime, scales linearly with the number of tasks. Finally, we present extensive benchmarking results to characterize both solution quality and runtime, which show improvements over existing decentralized task allocation methods.


1993 ◽  
Vol 1 (4) ◽  
pp. 313-333 ◽  
Author(s):  
Christine L. Valenzuela ◽  
Antonia J. Jones

Experiments with genetic algorithms using permutation operators applied to the traveling salesman problem (TSP) tend to suggest that these algorithms fail in two respects when applied to very large problems: they scale rather poorly as the number of cities n increases, and the solution quality degrades rapidly. We propose an alternative approach for genetic algorithms applied to hard combinatoric search which we call Evolutionary Divide and Conquer (EDAC). This method has potential for any search problem in which knowledge of good solutions for subproblems can be exploited to improve the solution of the problem itself. The idea is to use the genetic algorithm to explore the space of problem subdivisions rather than the space of solutions themselves. We give some preliminary results of this method applied to the geometric TSP.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Yu Du ◽  
Shaochuan Fu ◽  
Changxiang Lu ◽  
Qiang Zhou ◽  
Chunfang Li

This paper presents a simultaneous pickup and delivery route designing model, which considers the use of express lockers. Unlike the traditional traveling salesman problem (TSP), this model analyzes the scenario that a courier serves a neighborhood with multiple trips. Considering the locker and vehicle capacity, the total cost is constituted of back order, lost sale, and traveling time. We aim to minimize the total cost when satisfying all requests. A modified deep Q-learning network is designed to get the optimal results from our model, leveraging masked multi-head attention to select the courier paths. Our algorithm outperforms other stochastic optimization methods with better optimal solutions and O(n) computational time in evaluation processes. The experiment has shown that reinforcement learning is a better choice than traditional stochastic optimization methods, consuming less power and time during evaluation processes, which indicates that this approach fits better for large-scale data and broad deployment.


Sign in / Sign up

Export Citation Format

Share Document