scholarly journals Photonic Jet Suitable for High Precision Contact Laser Surgery Applications in Water

2020 ◽  
Vol 10 (2) ◽  
pp. 5565-5569 ◽  
Author(s):  
M. K. Azizi ◽  
A. A. Alotaibi

The use of contact probes in surgical laser technologies (SLT) allows tissue contact without damage and enables tactile feedback during operations. Among the materials suitable for the manufacturing of chirurgical contact probes, sapphire has been widely used. Indeed, the optical properties of this material allow the formation of a high energy density localized region at the front of the contact probe, when used in air. However, in water, this focusing effect is very weak. In this work, the use of a cylindrical sapphire contact probe associated with a continuous (CW) Nd: Yag laser (at 1064nm) is proposed and studied, which provides, in water, a narrow and high-intensity beam (photonic jet). With the evolution of technology, this kind of surgery can be done remotely. Based on 5G technology, medical experts can bring their skills to remote other practitioners around the world. The obtained results show a linear dependence of the focal length and a linear dependence of the beam intensity of the photonic jet to the cylinder radius while the full width at half maximum of the photonic jet beam shows exponential decay dependence. Such a system could give rise to a new kind of optical scalpel to the ultra-precise laser surgery in water.

2018 ◽  
Vol 85 (5) ◽  
Author(s):  
Lei Qin ◽  
Jiawei Cao ◽  
Yucheng Tang ◽  
Jian Zhu

Dielectric elastomer actuators (DEAs) exhibit interesting muscle-like attributes including large voltage-induced deformation and high energy density, thus can function as artificial muscles for soft robots/devices. This paper focuses on soft planar DEAs, which have extensive applications such as artificial muscles for jaw movement, stretchers for cell mechanotransduction, and vibration shakers for tactile feedback, etc. Specifically, we develop a soft planar DEA, in which compression springs are employed to make the entire structure freestanding. This soft freestanding actuator can achieve both linear actuation and turning without increasing the size, weight, or structural complexity, which makes the actuator suitable for driving a soft crawling robot. Furthermore, its simple structure and homogeneous deformation allow for analytic modeling, which can be used to interpret the large voltage-induced deformation and interesting mechanics phenomenon (i.e., wrinkling and electromechanical instability). A preliminary demonstration showcases that this soft planar actuator can be employed as an artificial muscle to drive a soft crawling robot.


TAPPI Journal ◽  
2010 ◽  
Vol 9 (6) ◽  
pp. 24-30 ◽  
Author(s):  
NIKLAS BERGLIN ◽  
PER TOMANI ◽  
HASSAN SALMAN ◽  
SOLVIE HERSTAD SVÄRD ◽  
LARS-ERIK ÅMAND

Processes have been developed to produce a solid biofuel with high energy density and low ash content from kraft lignin precipitated from black liquor. Pilot-scale tests of the lignin biofuel were carried out with a 150 kW powder burner and a 12 MW circulating fluidized bed (CFB) boiler. Lignin powder could be fired in a powder burner with good combustion performance after some trimming of the air flows to reduce swirl. Lignin dried to 10% moisture content was easy to feed smoothly and had less bridging tendencies in the feeding system than did wood/bark powder. In the CFB boiler, lignin was easily handled and cofired together with bark. Although the filter cake was broken into smaller pieces and fines, the combustion was not disturbed. When cofiring lignin with bark, the sulfur emission increased compared with bark firing only, but most of the sulfur was captured by calcium in the bark ash. Conventional sulfur capture also occurred with addition of limestone to the bed. The sulfur content in the lignin had a significantly positive effect on reducing the alkali chloride content in the deposits, thus reducing the high temperature corrosion risk.


1966 ◽  
Author(s):  
S. CHODOSH ◽  
E. KATSOULIS ◽  
M. ROSANSKY

2019 ◽  
Author(s):  
Zhao-Yang Zhang ◽  
Tao LI

Solar energy and ambient heat are two inexhaustible energy sources for addressing the global challenge of energy and sustainability. Solar thermal battery based on molecular switches that can store solar energy and release it as heat has recently attracted great interest, but its development is severely limited by both low energy density and short storage stability. On the other hand, the efficient recovery and upgrading of low-grade heat, especially that of the ambient heat, has been a great challenge. Here we report that solar energy and ambient heat can be simultaneously harvested and stored, which is enabled by room-temperature photochemical crystal-to-liquid transitions of small-molecule photoswitches. The two forms of energy are released together to produce high-temperature heat during the reverse photochemical phase change. This strategy, combined with molecular design, provides high energy density of 320-370 J/g and long-term storage stability (half-life of about 3 months). On this basis, we fabricate high-performance, flexible film devices of solar thermal battery, which can be readily recharged at room temperature with good cycling ability, show fast rate of heat release, and produce high-temperature heat that is >20<sup> o</sup>C higher than the ambient temperature. Our work opens up a new avenue to harvest ambient heat, and demonstrate a feasible strategy to develop high-performance solar thermal battery.


2019 ◽  
Author(s):  
Zhao-Yang Zhang ◽  
Tao LI

Solar energy and ambient heat are two inexhaustible energy sources for addressing the global challenge of energy and sustainability. Solar thermal battery based on molecular switches that can store solar energy and release it as heat has recently attracted great interest, but its development is severely limited by both low energy density and short storage stability. On the other hand, the efficient recovery and upgrading of low-grade heat, especially that of the ambient heat, has been a great challenge. Here we report that solar energy and ambient heat can be simultaneously harvested and stored, which is enabled by room-temperature photochemical crystal-to-liquid transitions of small-molecule photoswitches. The two forms of energy are released together to produce high-temperature heat during the reverse photochemical phase change. This strategy, combined with molecular design, provides high energy density of 320-370 J/g and long-term storage stability (half-life of about 3 months). On this basis, we fabricate high-performance, flexible film devices of solar thermal battery, which can be readily recharged at room temperature with good cycling ability, show fast rate of heat release, and produce high-temperature heat that is >20<sup> o</sup>C higher than the ambient temperature. Our work opens up a new avenue to harvest ambient heat, and demonstrate a feasible strategy to develop high-performance solar thermal battery.


2019 ◽  
Author(s):  
Yamin Zhang ◽  
Lina Chen ◽  
Chongyang Hao ◽  
Xiaowen Zheng ◽  
Yixuan Guo ◽  
...  

For the applications of aqueous Li-ion hybrid capacitors and Na-ion hybrid capacitors, potassium ions are pre-inserted into MnO<sub>2</sub> tunnel structure, the as-prepared K<sub>1.04</sub>Mn<sub>8</sub>O<sub>16</sub> materials consist of <a>nanoparticles</a> and nanorods were prepared by facile high-temperature solid-state reaction. <a></a>The as-prepared materials were well studied andthey show outstanding electrochemical behavior. We assembled hybrid supercapacitors with commercial activated carbon (YEC-8A) as anode and K<sub>1.04</sub>Mn<sub>8</sub>O<sub>16 </sub>as cathode. It has high energy densities and power densities. Li-ion capacitors reach a high energy density of 127.61 Wh kg<sup>-1 </sup>at the power density of 99.86 W kg<sup>-1</sup> and Na-ion capacitor obtains 170.96 Wh kg<sup>-1 </sup>at 133.79 W kg<sup>-1</sup>. In addition, the <a>hybrid supercapacitor</a>s demonstrate excellent cycling performance which maintain 97 % capacitance retention for Li-ion capacitor and 85 % for Na-ion capacitor after 10,000 cycles.


2013 ◽  
Vol 28 (11) ◽  
pp. 1207-1212 ◽  
Author(s):  
Jian-Wen LI ◽  
Ai-Jun ZHOU ◽  
Xing-Quan LIU ◽  
Jing-Ze LI

2018 ◽  
Vol 28 (5) ◽  
pp. 273-278
Author(s):  
Beomhee Kang ◽  
Soonhyun Hong ◽  
Hongkwan Yoon ◽  
Dojin Kim ◽  
Chunjoong Kim

Sign in / Sign up

Export Citation Format

Share Document