Adverse Drug Reactions, Drug Interactions, Therapeutic Drug Monitoring

2013 ◽  
pp. 1155-1155
Author(s):  
Archana Kher
2009 ◽  
Vol 24 (S1) ◽  
pp. 1-1
Author(s):  
E. Jaquenoud Sirot ◽  
P. Baumann

More than 80% of all adverse drug reactions are Type A reactions and dependent on drug concentrations. Therapeutic Drug Monitoring (TDM), Drug Interaction checking programs and pharmacogenetic tests are valuable instruments in elucidating or preventing Type A reactions. It stands for Quality Assurance in clinical practice. The TDMplus algorithm (Jaquenoud Sirot E et al 2006) is helpful in clinical practice and prevents unnecessary testing. This decision tree leads in several “stop/go” steps from the clinical situation of inefficacy or adverse reaction to measuring and interpreting plasma levels, checking for pharmacokinetic interactions and finally, if indicated, to pharmacogenetic tests with gentoyping and/or phenotyping. Genetic results are noted on a personal “pharmacogenetic card” for the patient's future treatments.The interplay of genetics, drug interactions, life style and other personal vulnerabilities like comorbidity make prediction of drug response very complex. The use of TDMplus has proven useful guiding the clinicians in difficult clinical situations and helping elucidating the causality of adverse drug reactions. Its practical benefit has been shown with pharmacovigilance cases from the AMSP program (Arzneimittelsicherheit in der Psychiatrie = Drug Safety in Psychiatry).


Author(s):  
Sven Ulrich ◽  
Pierre Baumann ◽  
Andreas Conca ◽  
Hans-Joachim Kuss ◽  
Viktoria Stieffenhofer ◽  
...  

Therapeutic drug monitoring (TDM) has consistently been shown to be useful for optimization of drug therapy. For the first time, a method has been developed for the text analysis of TDM in SPCs in that a catalogue SPC-ContentTDM (SPCCTDM) provides a codification of the content of TDM in SPCs. It consists of six structure-related items (dose, adverse drug reactions, drug interactions, overdose, pregnancy/breast feeding, and pharmacokinetics) according to implicit or explicit references to TDM in paragraphs of the SPC, and four theory-guided items according to the information about ranges of plasma concentrations and a recommendation of TDM in the SPC. The catalogue is regarded as valid for the text analysis of SPCs with respect to TDM. It can be used in the comparison of SPCs, in the comparison with medico-scientific evidence and for the estimation of the perception of TDM in SPCs by the reader. Regarding the approach as a model of text mining, it may be extended for evaluation of other aspects reported in SPCs.


Author(s):  
Sven Ulrich ◽  
Pierre Baumann ◽  
Andreas Conca ◽  
Hans-Joachim Kuss ◽  
Viktoria Stieffenhofer ◽  
...  

Therapeutic drug monitoring (TDM) has consistently been shown to be useful for optimization of drug therapy. For the first time, a method has been developed for the text analysis of TDM in SPCs in that a catalogue SPC-ContentTDM (SPCCTDM) provides a codification of the content of TDM in SPCs. It consists of six structure-related items (dose, adverse drug reactions, drug interactions, overdose, pregnancy/breast feeding, and pharmacokinetics) according to implicit or explicit references to TDM in paragraphs of the SPC, and four theory-guided items according to the information about ranges of plasma concentrations and a recommendation of TDM in the SPC. The catalogue is regarded as valid for the text analysis of SPCs with respect to TDM. It can be used in the comparison of SPCs, in the comparison with medico-scientific evidence and for the estimation of the perception of TDM in SPCs by the reader. Regarding the approach as a model of text mining, it may be extended for evaluation of other aspects reported in SPCs.


2005 ◽  
Vol 18 (6) ◽  
pp. 444-460 ◽  
Author(s):  
Michele Y. Splinter

Eight new antiepileptic drugs (AEDs) have been approved for use within the United States within the past decade. They are felbamate, gabapentin, lamotrigine, levetiracetam, oxcarbazepine, tiagabine, topiramate, and zonisamide. These afford clinicians with more options to increase efficacy and tolerability in the treatment of patients with epilepsy. Pharmacokinetic properties and drug interactions with other AEDs and other medications taken for comorbidities are individually discussed for each of these new agents. Drug concentrations are not routinely monitored for these newer agents, and there have been few studies designed to investigate their concentration-effect relationships. For most of these medications, the concentrations observed in responders and nonresponders overlap considerably and levels associated with efficacy are often associated with adverse events, complicating the definition of target ranges. Also, epilepsy manifests itself sporadically causing difficulty in clinically monitoring efficacy of medications. Therapeutic drug monitoring provides for the individualization of treatment for these agents, which is important because they demonstrate significant variability in inter- and intraindividual pharmaco-kinetic properties. Therapeutic drug monitoring also allows for identification of noncompliance, drug interactions, and toxicity. Current knowledge of the relationships between efficacy, toxicity, and drug concentrations is discussed.


1998 ◽  
Vol 44 (2) ◽  
pp. 415-419 ◽  
Author(s):  
Philip D Walson

Abstract Therapeutic drug monitoring (TDM) is commonly used to maintain “therapeutic” drug concentrations. Even in compliant patients, with “average” drug kinetics, TDM is useful to identify the causes of unwanted or unexpected responses, prevent unnecessary diagnostic testing, improve clinical outcomes, and even save lives. TDM has greatest promise in certain special populations who are: (a) prone to under- or overrespond to usual dosing regimens, (b) least able to tolerate, recognize, or communicate drug effects, or who are (c) intentionally or accidentally misdosed. TDM is especially useful in patients at the extremes of age, in adolescents, and in patients who are either taking multiple drugs or expressing unusual pharmacokinetics as a result of physiological, environmental, or genetic causes. Less-well-appreciated uses of TDM include prevention of dangerousunderdosing of patients, investigation of adverse drug reactions, and identification of serious medication errors, even for a number of drugs that are not traditionally monitored. TDM can be useful for some drugs in any patient and for most drugs in some special populations.


2020 ◽  
Vol 40 (5) ◽  
pp. 1794-1832 ◽  
Author(s):  
Michele Protti ◽  
Roberto Mandrioli ◽  
Camilla Marasca ◽  
Andrea Cavalli ◽  
Alessandro Serretti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document