Aging of Type 316L Stainless Steel in Seawater: Relationship Between Open-Circuit Potential, Exposure Time, and Pitting Potential

CORROSION ◽  
1996 ◽  
Vol 52 (7) ◽  
pp. 496-501 ◽  
Author(s):  
C. Compère ◽  
P. Jaffré ◽  
D. Festy
2019 ◽  
Vol 26 (5) ◽  
pp. 630-640 ◽  
Author(s):  
Raul Davalos Monteiro ◽  
Jan van de Wetering ◽  
Benjamin Krawczyk ◽  
Dirk L. Engelberg

Abstract The corrosion behaviour of type 316L stainless steel in aqueous 30–50 wt%. NaOH at temperatures up to 90 °C has been elucidated. Exposure to room temperature environment showed parabolic weight loss behaviour, with corrosion rates of up to 0.4 mm/year. Higher NaOH concentrations and exposure temperatures resulted in a reduced stability of the electrochemical passivity domain, associated with higher corrosion rates. Exposure to de-aerated 50 wt%. NaOH presented corrosion rates of up to 0.5 mm/year at open circuit potential, with maximum corrosion rates under polarisation of up to ≈ 18 mm/year. The formation of a dark iron-oxy-hydroxide and nickel-oxide was observed, with exposure to temperatures in excess of 50 °C. The behaviour of type 316L stainless steel in hot caustic environment is compared to types 204, 304, 2205 stainless steel, and nickel alloy 200. Graphic Abstract


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Nobuyoshi Hara ◽  
Koichi Hirabayashi ◽  
Yu Sugawara ◽  
Izumi Muto

The beneficial effect of the removal of MnS inclusions on the pitting of stainless steels has been demonstrated in two ways. (1) High-purity Type 316L stainless steel with no inclusions was used as a specimen in the measurement of anodic polarization curves in 0.5 M NaCl and (2) commercial Type 316L stainless steel with MnS and slag-related inclusions was first polarized at different potentials for 30 min in 1 M Na2SO4of pH 3 and then anodic polarization measurements were taken in 0.5 M NaCl. Pitting did not occur in the passive or transpassive region of the high-purity steel. The polarization treatment dissolved MnS and some oxide inclusions (CaO and SiO2) on the surface of the commercial steel. An increase in pitting potential of the commercial steel was noted after treatment at potentials above 0.2 V. At the same time, the number of current spikes due to metastable pits decreased significantly. These results are more likely due to the beneficial effect of removing MnS inclusions from the steel surface rather than the modification effect of the chemical composition of passive films on the surface.


Alloy Digest ◽  
1995 ◽  
Vol 44 (6) ◽  

Abstract BioDur 316LS stainless steel is a modified version of Type 316L stainless steel to improve corrosion resistance for surgical implant applications. The alloy is vacuum arc remelted. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-596. Producer or source: Carpenter.


Alloy Digest ◽  
2015 ◽  
Vol 64 (7) ◽  

Abstract EnduraMet 316LN stainless is a nitrogen strengthened version of Type 316L stainless steel. This datasheet provides information on composition, physical properties, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-1219. Producer or source: Carpenter Technology Corporation.


2019 ◽  
Vol 7 (46) ◽  
pp. 26250-26260 ◽  
Author(s):  
Hee Jae Kim ◽  
Hitoshi Yashiro ◽  
Hyungsub Kim ◽  
Seoungsu Lee ◽  
Seung-Taek Myung

Type 316L SS is stable in NaPF6 electrolytes, while Fe2+ is dissolved from the type 316L SS in KPF6 electrolytes.


Sign in / Sign up

Export Citation Format

Share Document