scholarly journals Hydrothermal Flux and Global Ocean Chemistry.

1995 ◽  
Vol 104 (1) ◽  
pp. 16-27 ◽  
Author(s):  
Naotatsu SHIKAZONO
Keyword(s):  
Geology ◽  
2021 ◽  
Author(s):  
Jiarui Liu ◽  
Gilad Antler ◽  
André Pellerin ◽  
Gareth Izon ◽  
Ingrid Dohrmann ◽  
...  

Sedimentary pyrite formation links the global biogeochemical cycles of carbon, sulfur, and iron, which, in turn, modulate the redox state of the planet’s surficial environment over geological time scales. Accordingly, the sulfur isotopic composition (δ34S) of pyrite has been widely employed as a geochemical tool to probe the evolution of ocean chemistry. Characteristics of the depositional environment and post-depositional processes, however, can modify the δ34S signal that is captured in sedimentary pyrite and ultimately preserved in the geological record. Exploring sulfur and iron diagenesis within the Bornholm Basin, Baltic Sea, we find that higher sedimentation rates limit the near-surface sulfidization of reactive iron, facilitating its burial and hence the subsurface availability of reactive iron for continued and progressively more 34S-enriched sediment-hosted pyrite formation (δ34S ≈ –5‰). Using a diagenetic model, we show that the amount of pyrite formed at the sediment-water interface has increased over the past few centuries in response to expansion of water-column hypoxia, which also impacts the sulfur isotopic signature of pyrite at depth. This contribution highlights the critical role of reactive iron in pyrite formation and questions to what degree pyrite δ34S values truly reflect past global ocean chemistry and biogeochemical processes. This work strengthens our ability to extract local paleoenvironmental information from pyrite δ34S signatures.


2011 ◽  
Vol 119 (4) ◽  
pp. 335-349 ◽  
Author(s):  
Bradley D. Cramer ◽  
Axel Munnecke ◽  
David I. Schofield ◽  
Karsten M. Haase ◽  
Alexandra Haase-Schramm
Keyword(s):  

1997 ◽  
Vol 25 ◽  
pp. 111-115 ◽  
Author(s):  
Achim Stössel

This paper investigates the long-term impact of sea ice on global climate using a global sea-ice–ocean general circulation model (OGCM). The sea-ice component involves state-of-the-art dynamics; the ocean component consists of a 3.5° × 3.5° × 11 layer primitive-equation model. Depending on the physical description of sea ice, significant changes are detected in the convective activity, in the hydrographic properties and in the thermohaline circulation of the ocean model. Most of these changes originate in the Southern Ocean, emphasizing the crucial role of sea ice in this marginally stably stratified region of the world's oceans. Specifically, if the effect of brine release is neglected, the deep layers of the Southern Ocean warm up considerably; this is associated with a weakening of the Southern Hemisphere overturning cell. The removal of the commonly used “salinity enhancement” leads to a similar effect. The deep-ocean salinity is almost unaffected in both experiments. Introducing explicit new-ice thickness growth in partially ice-covered gridcells leads to a substantial increase in convective activity, especially in the Southern Ocean, with a concomitant significant cooling and salinification of the deep ocean. Possible mechanisms for the resulting interactions between sea-ice processes and deep-ocean characteristics are suggested.


2004 ◽  
Author(s):  
Carl Wunsch ◽  
Ichiro Fukumori ◽  
Tong Lee ◽  
Dimitris Menemenlis ◽  
David W. Behringer ◽  
...  

2002 ◽  
Author(s):  
Dean H. Roemmich ◽  
Russ E. Davis ◽  
Stephen C. Riser ◽  
W. B. Owens ◽  
Robert L. Molinari ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document