scholarly journals Aboveground biomass of a Eucalyptus hybrid subjected to two water regimes

Author(s):  
G.C. Poleto ◽  
K.F. Santos ◽  
A.A. Ludvichak ◽  
D.R. Momolli ◽  
M.V. Schumacher ◽  
...  
2003 ◽  
Vol 17 (2) ◽  
pp. 139-152 ◽  
Author(s):  
A. C. Flemmer ◽  
C. A. Busso ◽  
O. A. Fernández ◽  
T. Montani

2017 ◽  
Vol 44 (2) ◽  
pp. 219 ◽  
Author(s):  
Jian Yong Wang ◽  
Neil C. Turner ◽  
Ying Xia Liu ◽  
Kadambot H. M. Siddique ◽  
You Cai Xiong

Modern hexaploid wheat has several diploid and tetraploid predecessors. Morpho-physiological adaptation and the adaptation to drought of these different ploidy wheat species is largely unknown. To investigate the adaptation to drought stress, eight accesssions (two wild diploid (2n) accessions of Aegilops tauschii Coss., two domesticated diploid (2n) accessions of Triticum monococcum L., two domesticated tetraploid (4n) accessions of Triticum dicoccum Schrank ex Schübl. and two domesticated hexaploid (6n) accessions of Triticum aestivum L.) were exposed to three water regimes: (i) well-watered control (WW, 80% field capacity (FC)), (ii) moderate water stress (MS, 50% FC), and (iii) severe water stress (SS, 25% FC) from 30 days after sowing to maturity. The results showed that accession (A), water regime (W), and the interaction of A × W significantly affected yield, morpho-physiological traits, biochemical characteristics and biomass allocation. In the WW treatment, the aboveground biomass, ear biomass, grain yield and harvest index increased, whereas the number of spikes and spikelets per plant decreased from accessions of T. monococcum to T. dicoccum to T. aestivum. Across all accessions, yields decreased by 29% under moderate water stress and 61% under severe water stress. In all three water regimes, yields were positively correlated with photosynthesis (Pn) per plant (Pn × leaf area) at jointing and anthesis, largely the result of the differences and changes in leaf area. Water use efficiency for grain (WUEG) decreased by 2–6% in T. monococcum, but it increased by 15–16% in T. dicoccum and T. aestivum under drought stress. Analysis of the allometric relationships between aboveground biomass (MAB) and root biomass (Mroot) in the different species indicated that less biomass was allocated to roots with greater polyploidy while more biomass was allocated to roots with drought in A. tauschii, but not in the domesticated species. We conclude that domestication, selection and breeding of higher ploidy wheat has increased wheat yields primarily by increasing aboveground biomass and harvest index, increases that were maintained under water stress.


2017 ◽  
Vol 23 (2) ◽  
Author(s):  
AFSHAN ANJUM BABA ◽  
SYED NASEEM UL-ZAFAR GEELANI ◽  
ISHRAT SALEEM ◽  
MOHIT HUSAIN ◽  
PERVEZ AHMAD KHAN ◽  
...  

The plant biomass for protected areas was maximum in summer (1221.56 g/m2) and minimum in winter (290.62 g/m2) as against grazed areas having maximum value 590.81 g/m2 in autumn and minimum 183.75 g/m2 in winter. Study revealed that at Protected site (Kanidajan) the above ground biomass ranged was from a minimum (1.11 t ha-1) in the spring season to a maximum (4.58 t ha-1) in the summer season while at Grazed site (Yousmarag), the aboveground biomass varied from a minimum (0.54 t ha-1) in the spring season to a maximum of 1.48 t ha-1 in summer seasonandat Seed sown site (Badipora), the lowest value of aboveground biomass obtained was 4.46 t ha-1 in spring while as the highest (7.98 t ha-1) was obtained in summer.


2005 ◽  
Vol 53 (4) ◽  
pp. 405-415 ◽  
Author(s):  
P. Janaki ◽  
T. M. Thiyagarajan

Field experiments were conducted during 1998 and 1999 in June-September with rice variety ASD18 at the wetland farm, Tamil Nadu Agricultural University, Coimbatore, India to find out theeffect of N management approaches and planting densities on N accumulation by transplanted rice in a split plot design.The main plot consisted of three plant populations (33, 66 and 100 hills m-2) and the sub-plot treatments of five N management approaches. The results revealed thatthe average N uptake in roots and aboveground biomass progressively increased with growth stages. The mean root and aboveground biomass Nuptake were 26.1 to 130.6 and 6.4 to 17.8 kg ha-1, respectively. The N uptake of grain and straw was higher in theSesbania rostratagreen manuring + 150 kg N treatment, but it was not effective in increasing the grain yield. The mean total N uptake was found to be significantly lower at 33 hills m-2(76.9 kg ha-1) and increased with an increase in planting density (100.9 and 117.2 kg ha-1at 66 and 100 hills m-2density). N application had a significant influence on N uptake and the time course of N uptake in all the SPAD-guided N approaches. A significant regression coefficient was observed between the crop N uptake and grain yield. The relationship between cumulative N uptake at the flowering stage and the grain yield was quadratic at all three densities. The N uptake rate (µN) was maximum during the active tillering to panicle initiation period and declined sharply after that. In general, µNincreased with an increase in planting density and the increase was significant up to the panicle initiation to flowering period.thereafter, the N uptake rate was similar at densities of 66 and 100 hills m-2.


2016 ◽  
Vol 5 (1) ◽  
pp. 1483-1499 ◽  
Author(s):  
Zhuoting Wu ◽  
◽  
Dennis Dye ◽  
Jason Stoker ◽  
John Vogel ◽  
...  
Keyword(s):  

2010 ◽  
Vol 36 (11) ◽  
pp. 1832-1842 ◽  
Author(s):  
Bo PENG ◽  
Yang WANG ◽  
Yong-Xiang LI ◽  
Cheng LIU ◽  
Zhi-Zhai LIU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document