scholarly journals Lunar ionosphere exploration method using auroral kilometric radiation

2011 ◽  
Vol 63 (1) ◽  
pp. 47-56 ◽  
Author(s):  
Yoshitaka Goto ◽  
Takamasa Fujimoto ◽  
Yoshiya Kasahara ◽  
Atsushi Kumamoto ◽  
Takayuki Ono

2020 ◽  
Vol 60 (5) ◽  
pp. 538-546
Author(s):  
D. V. Chugunin ◽  
A. A. Chernyshov ◽  
I. L. Moiseenko ◽  
M. E. Viktorov ◽  
M. M. Mogilevsky


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2466
Author(s):  
Qingwen Rao ◽  
Guanjun Xu ◽  
Wangchen Mao

In this paper, the detection of the lunar surface soil permittivity with megahertz electromagnetic (EM) waves by spaceborne radar is studied based on the EM scattering theory, the Boltzmann–Shukla equations, and the improved scattering matrix method (ISMM). The reflection characteristics of the lunar surface soil subject to megahertz waves are analyzed through the EM scattering theory and expressed by the lunar surface soil permittivity. Then, the lunar ionosphere is assumed to be composed of dusty plasma, and its EM characteristics are described with the Boltzmann–Shukla equations. Finally, the transmission and reflection characteristics of the propagation of EM waves in the lunar ionosphere are numerically calculated with ISMM. Thus, the complex permittivity of lunar surface soil is obtained. In addition, the effects of detection environment situations, such as the lunar illumination intensity, characteristics of the lunar dust and dust charging process in the lunar ionosphere, on the amplitude and phase of EM waves are also investigated in this study. The simulation results show that an EM wave at a high frequency induces a strong effective wave with a stable phase shift and a significantly small interferential wave. Moreover, the lunar illumination is more effective under EM waves in low frequency bands; the characteristics of the lunar dust have a notable influence on the transmission and absorption coefficients of the effective waves. These conclusions help in real applications involving the detection of the lunar surface soil permittivity by spaceborne radar in various lunar environments.



1992 ◽  
Vol 97 (A8) ◽  
pp. 12029 ◽  
Author(s):  
R. Pottelette ◽  
R. A. Treumann ◽  
N. Dubouloz


Radio Science ◽  
1984 ◽  
Vol 19 (2) ◽  
pp. 543-550 ◽  
Author(s):  
Robert F. Benson


2000 ◽  
Vol 105 (A1) ◽  
pp. 277-289 ◽  
Author(s):  
W. L. Imhof ◽  
M. Walt ◽  
R. R. Anderson ◽  
D. L. Chenette ◽  
J. D. Hawley ◽  
...  


1995 ◽  
Vol 100 (A1) ◽  
pp. 281
Author(s):  
T. J. Rosenberg ◽  
S. Singh ◽  
C. S. Wu ◽  
J. LaBelle ◽  
R. A. Treumann ◽  
...  




2001 ◽  
Vol 19 (10/12) ◽  
pp. 1259-1272 ◽  
Author(s):  
D. A. Gurnett ◽  
R. L. Huff ◽  
J. S. Pickett ◽  
A. M. Persoon ◽  
R. L. Mutel ◽  
...  

Abstract. In this report we present the first results from the Cluster wideband plasma wave investigation. The four Cluster spacecraft were successfully placed in closely spaced, high-inclination eccentric orbits around the Earth during two separate launches in July – August 2000. Each spacecraft includes a wideband plasma wave instrument designed to provide high-resolution electric and magnetic field wave-forms via both stored data and direct downlinks to the NASA Deep Space Network. Results are presented for three commonly occurring magnetospheric plasma wave phenomena: (1) whistlers, (2) chorus, and (3) auroral kilometric radiation. Lightning-generated whistlers are frequently observed when the spacecraft is inside the plasmasphere. Usually the same whistler can be detected by all spacecraft, indicating that the whistler wave packet extends over a spatial dimension at least as large as the separation distances transverse to the magnetic field, which during these observations were a few hundred km. This is what would be expected for nonducted whistler propagation. No case has been found in which a strong whistler was detected at one spacecraft, with no signal at the other spacecraft, which would indicate ducted propagation. Whistler-mode chorus emissions are also observed in the inner region of the magnetosphere. In contrast to lightning-generated whistlers, the individual chorus elements seldom show a one-to-one correspondence between the spacecraft, indicating that a typical chorus wave packet has dimensions transverse to the magnetic field of only a few hundred km or less. In one case where a good one-to-one correspondence existed, significant frequency variations were observed between the spacecraft, indicating that the frequency of the wave packet may be evolving as the wave propagates. Auroral kilometric radiation, which is an intense radio emission generated along the auroral field lines, is frequently observed over the polar regions. The frequency-time structure of this radiation usually shows a very good one-to-one correspondence between the various spacecraft. By using the microsecond timing available at the NASA Deep Space Net-work, very-long-baseline radio astronomy techniques have been used to determine the source of the auroral kilometric radiation. One event analyzed using this technique shows a very good correspondence between the inferred source location, which is assumed to be at the electron cyclotron frequency, and a bright spot in the aurora along the magnetic field line through the source.Key words. Ionosphere (wave-particle interactions; wave propagation) – Magnetospheric physics (plasma waves and instabilities; instruments and techniques)



Sign in / Sign up

Export Citation Format

Share Document