Classification of Damaged Composite Structures Using Structural Vibration Signals Featuring Robustness to Measurement Locations

Author(s):  
Daun Lee ◽  
Jang Woo Han ◽  
Heung Soo Kim ◽  
Jung Woo Sohn
1999 ◽  
Author(s):  
T. I. Liu ◽  
F. Ordukhani

Abstract An on-line monitoring and diagnostic system is needed to detect faulty bearings. In this work, by applying the feature selection technique to the data obtained from vibration signals, six indices were selected. Artificial neural networks were used for nonlinear pattern recognition. An attempt was made to distinguish between normal and defective bearings. Counterpropagation neural networks with various network sizes were trained for these tasks. The counterpropagation neural networks were able to recognize a normal from a defective bearing with the success rate between 88.3% to 100%. The best results were obtained when all the six indices were used for the on-line classification of roller bearings.


2017 ◽  
Vol 168 (1) ◽  
pp. 68-72
Author(s):  
Piotr BOGUŚ ◽  
Mateusz CIESZYŃSKI ◽  
Jerzy MERKISZ

The paper presents a method of classification of locomotive Diesel engine states basing on vibration signals taken from an engine body and using chosen statistical parameters calculated for the original signal and it wavelet multiresolution components. The researches presented in the paper concern estimation of an engine states before and after a general repair. The target application of the presented researches is an on-line diagnostic system which can complement standard OBD systems. To this purpose the applied methods should not base on complex analysis of some spectral, time-frequency or scalogram plots but rather on choosing single diagnostic parameters which are suitable for the fast on-line diagnostic. The results have showed the significant difference in distinguishing of engine work before and after a general repair using some chosen statistical parameters applied to vibration signals.


2021 ◽  
pp. 367-374
Author(s):  
Oleksandr Semko ◽  
Anton Hasenko
Keyword(s):  

2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Dan Ma ◽  
Yixiang Lu ◽  
Yushun Zhang ◽  
Hua Bao ◽  
Xueming Peng

In state analysis of rolling bearings using collaborative representation theory, how to construct an excellent redundant dictionary to collaboratively represent the acquired normal or abnormal data has been being a significant issue. Thus, a new method for fault detection and classification of rolling bearings is proposed in this paper. The proposed algorithm mainly consists of three components. First, a wavelet transform is employed to extract features, which takes advantage of the observation that vibration signals under different conditions have similar frequency spectra. This similarity ensures that we can collaboratively represent any test sample by using training samples. Second, under the similarity assumption, a dictionary pair learning strategy is employed to build an overcomplete dictionary pair, which is used to realize an optimal representation of the vibration signal. Meanwhile, the sparse constraint is also taken into account during dictionary training to enhance the robustness of the classification. Finally, the learned dictionary combined with collaborative representation is used to intelligently perform pattern classification of rolling bearings. The effectiveness and superiority of the method are verified by applying the proposed algorithm on the simulated and real vibration signals. The results show that, for different fault categories generated from different fault size and motor loads, our method can rapidly and accurately identify the fault category to which the input sample belongs.


2011 ◽  
Vol 219-220 ◽  
pp. 1337-1341 ◽  
Author(s):  
Jun Hong Cao ◽  
Zhuo Bin Wei

The analysis of structure vibration signals is influenced by noise mixed in the signals. Independent component analysis (ICA) method is introduced to denoise the vibration signals in this paper. The representative algorithms: FastICA and JADE are told in detail. The algorithms are applied to separate steel structural vibration signals. The denoising performances in impulsive vibration signals generated by steel structure demonstrate the effectiveness and good robustness of ICA method.


Sign in / Sign up

Export Citation Format

Share Document