scholarly journals Analysis of Different Similarity Measure Functions and Their Impacts on Shared Nearest Neighbor Clustering Approach

2012 ◽  
Vol 40 (16) ◽  
pp. 1-5 ◽  
Author(s):  
Anil KumarPatidar ◽  
Jitendra Agrawal ◽  
Nishchol Mishra
2019 ◽  
Vol 11 (3) ◽  
pp. 350 ◽  
Author(s):  
Qiang Li ◽  
Qi Wang ◽  
Xuelong Li

A hyperspectral image (HSI) has many bands, which leads to high correlation between adjacent bands, so it is necessary to find representative subsets before further analysis. To address this issue, band selection is considered as an effective approach that removes redundant bands for HSI. Recently, many band selection methods have been proposed, but the majority of them have extremely poor accuracy in a small number of bands and require multiple iterations, which does not meet the purpose of band selection. Therefore, we propose an efficient clustering method based on shared nearest neighbor (SNNC) for hyperspectral optimal band selection, claiming the following contributions: (1) the local density of each band is obtained by shared nearest neighbor, which can more accurately reflect the local distribution characteristics; (2) in order to acquire a band subset containing a large amount of information, the information entropy is taken as one of the weight factors; (3) a method for automatically selecting the optimal band subset is designed by the slope change. The experimental results reveal that compared with other methods, the proposed method has competitive computational time and the selected bands achieve higher overall classification accuracy on different data sets, especially when the number of bands is small.


2012 ◽  
Vol 532-533 ◽  
pp. 1373-1377 ◽  
Author(s):  
Ai Ping Deng ◽  
Ben Xiao ◽  
Hui Yong Yuan

In allusion to the disadvantage of having to obtain the number of clusters in advance and the sensitivity to selecting initial clustering centers in the K-means algorithm, an improved K-means algorithm is proposed, that the cluster centers and the number of clusters are dynamically changing. The new algorithm determines the cluster centers by calculating the density of data points and shared nearest neighbor similarity, and controls the clustering categories by using the average shared nearest neighbor self-similarity.The experimental results of IRIS testing data set show that the algorithm can select the cluster cennters and can distinguish between different types of cluster efficiently.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Leandro Juvêncio Moreira ◽  
Leandro A. Silva

The k nearest neighbor is one of the most important and simple procedures for data classification task. The kNN, as it is called, requires only two parameters: the number of k and a similarity measure. However, the algorithm has some weaknesses that make it impossible to be used in real problems. Since the algorithm has no model, an exhaustive comparison of the object in classification analysis and all training dataset is necessary. Another weakness is the optimal choice of k parameter when the object analyzed is in an overlap region. To mitigate theses negative aspects, in this work, a hybrid algorithm is proposed which uses the Self-Organizing Maps (SOM) artificial neural network and a classifier that uses similarity measure based on information. Since SOM has the properties of vector quantization, it is used as a Prototype Generation approach to select a reduced training dataset for the classification approach based on the nearest neighbor rule with informativeness measure, named iNN. The SOMiNN combination was exhaustively experimented and the results show that the proposed approach presents important accuracy in databases where the border region does not have the object classes well defined.


Sign in / Sign up

Export Citation Format

Share Document