scholarly journals Adaptive Modulation for SFBC-OFDM Systems with Zero-Forcing Equalization

2015 ◽  
Vol 3 (2) ◽  
pp. 6-11 ◽  
Author(s):  
P.N. Kota ◽  
A.N. Gaikwad ◽  
Pranav M.
2021 ◽  
Author(s):  
Bharath Umasankar

In this thesis, we propose novel techniques to improve the performance of OFDM systems. We present a simple adaptive modulation technique to mitigate the nonlinear distortion effects of OFDM signals. Based on an estimation of the nonlinearity of the HPA/channel, for each OFDM symbol, a calculation is done at the transmitter side which identifies the subcarries with high distortion and correpsondingly reduces the modulation level on those subcarriers. This procedure is repeated until the nonlinear distortion is below a predetermined threshold. This technique is shown to improve the BER performance considerably while the reduction in data rate is small. The data rate is reduced by 4% for a system with 64 subcarriers and 16 QAM as primary and 4 QAM as secondary modulation levels. The tone reservation technique used in conventional PAPR reduction is suitably modified to provide a simple solution to reduce the average power requirement in intenstiy modulated optical OFDM systems. With two reserved subcarriers the reduction in power is approximately 2 dB for 16 QAM modulation with 64 subcarriers and 1dB for 256 subcarriers. We also describe techniques to improve the BER performance of grouped linear constellation precoding (GLCP) OFDM which is used to achieve frequency diversity. We present an Adaptive Weighting (AW) technique in which during MLSE, the distance of the possible constellation points from the received symbols are weighted according to the SNR of each subcarrier before the sequence with the minimum distance is chosen. We also analyze a sub optimum iterative decoding algorithm which improves the performance of an initial zero forcing detection iteratively on a symbol by symbol basis. Both techniques improve the performance of the GLCP-OFDM system considerably at the expense of increased complexity.


2021 ◽  
Author(s):  
Bharath Umasankar

In this thesis, we propose novel techniques to improve the performance of OFDM systems. We present a simple adaptive modulation technique to mitigate the nonlinear distortion effects of OFDM signals. Based on an estimation of the nonlinearity of the HPA/channel, for each OFDM symbol, a calculation is done at the transmitter side which identifies the subcarries with high distortion and correpsondingly reduces the modulation level on those subcarriers. This procedure is repeated until the nonlinear distortion is below a predetermined threshold. This technique is shown to improve the BER performance considerably while the reduction in data rate is small. The data rate is reduced by 4% for a system with 64 subcarriers and 16 QAM as primary and 4 QAM as secondary modulation levels. The tone reservation technique used in conventional PAPR reduction is suitably modified to provide a simple solution to reduce the average power requirement in intenstiy modulated optical OFDM systems. With two reserved subcarriers the reduction in power is approximately 2 dB for 16 QAM modulation with 64 subcarriers and 1dB for 256 subcarriers. We also describe techniques to improve the BER performance of grouped linear constellation precoding (GLCP) OFDM which is used to achieve frequency diversity. We present an Adaptive Weighting (AW) technique in which during MLSE, the distance of the possible constellation points from the received symbols are weighted according to the SNR of each subcarrier before the sequence with the minimum distance is chosen. We also analyze a sub optimum iterative decoding algorithm which improves the performance of an initial zero forcing detection iteratively on a symbol by symbol basis. Both techniques improve the performance of the GLCP-OFDM system considerably at the expense of increased complexity.


2012 ◽  
Vol 2012 ◽  
pp. 1-12
Author(s):  
Ali Maiga ◽  
Jean-Yves Baudais ◽  
Jean-François Hélard

We propose a new resource allocation algorithm with minimum mean square error (MMSE) detector for multicast linear precoded orthogonal frequency division multiplexing (LP-OFDM) systems. To increase the total multicast bit rate, this algorithm jointly uses the LP-OFDM modulation technique and an adaptation of the OFDM-based multicast approaches to exploit the transmission link diversities of users. The LP technique applied to multicast OFDM systems with zero forcing (ZF) detector has already proved its ability to increase the unirate multicast system bit rate in a power line communication (PLC) context. The new MMSE detector and the new related bit-loading algorithm are developed to enhance the ZF detector results. To improve both the bit rate and the fairness among multicast users, the utilization of the LP component in multirate multicast systems is then investigated. Simulations are run over indoor PLC channels, and it is shown that the proposed LP-based methods outperform the OFDM-based methods in terms of total bit rate and fairness index for both unirate and multirate multicast systems. Additionally, it is shown that the proposed bit-loading algorithm with MMSE detector outperforms the ZF detector and the OFDM-based receiver in terms of total multicast bit rate and fairness among users.


Sign in / Sign up

Export Citation Format

Share Document