Finite element method based analysis of planetary gear systems considering backlash and manufacturing deviations

Author(s):  
A. Mihailidis ◽  
G. Korbetis ◽  
N. Drivakos ◽  
I. Nerantzis
Author(s):  
N Zhang ◽  
A Crowther ◽  
D K Liu ◽  
J Jeyakumaran

A dynamic model of a passenger car automatic transmission and driveline is developed for simulating transient torsional vibration in gearshifts. A finite element method is proposed for presenting the transient dynamics of the parametric system, element matrices are defined and then global inertial, stiffness and damping matrices are formulated corresponding to the defined global coordinate vectors. A four-degree-of-freedom matrix element is developed that describes the rigid body dynamics of the planetary gear set and is then integrated with the driveline system; this element captures the parametric change while the transmission speed ratios vary over gearshifts. Free vibration analysis and a transient 2-3 upshift simulation are discussed and results presented.


2013 ◽  
Vol 284-287 ◽  
pp. 1012-1017
Author(s):  
Pei Yu Wang ◽  
Xuan Long Cai

Planetary gear trains produce several advantages, including high speed reduction, compactness, greater load sharing and higher torque to weight ratio, which are used widely in wind turbine, automobiles, robot and other applications. In some important transmission applications, the noise and vibration are key concerns in design. In this paper, a 3D dynamic contact and impact analysis model of planetary gear trains has been proposed. Tooth surface friction, backlash, tolerance of peg hole, and time-varying stiffness were considered in this dynamic model. The ANSYS / LS-DYNA were utilized to analyze the dynamic responses of gear transmission of the planetary gears. The vibration behavior of an actual gear set under dynamic loading was simulated in the dynamic model. The stiffness and elastic deformation of gear teeth are calculated using the finite element method with actual geometry and positions of the gears. The time-varying position of the carrier defined as the vibration and noise source. After impact analysis, the numerical results of vibration of carrier involved with the transient and steady states. Through the Fast Fourier Transform (FFT) methods, frequency spectrums of the transient and steady states of the calculated vibration of planet carrier are obtained for the gearbox designer to avoid the resonance zone.


2010 ◽  
Vol 168-170 ◽  
pp. 2590-2594
Author(s):  
Jian Jie Zhang ◽  
Wen Lei Sun ◽  
Lei Lei Ma

This paper on wind generator set planetary gear had a simple introduction, and finite element method was used on the planetary gear transmission dynamics analysis, the conclusion was drawn that the different planetary gear in the direction of the force and deformation, so as to improve the quality of the gear is designed to provide a scientific basis.


Nanoscale ◽  
2019 ◽  
Vol 11 (43) ◽  
pp. 20868-20875 ◽  
Author(s):  
Junxiong Guo ◽  
Yu Liu ◽  
Yuan Lin ◽  
Yu Tian ◽  
Jinxing Zhang ◽  
...  

We propose a graphene plasmonic infrared photodetector tuned by ferroelectric domains and investigate the interfacial effect using the finite element method.


Sign in / Sign up

Export Citation Format

Share Document