Effects of human disturbance on the Hooded Crane (Grus monacha) at stopover sites in northeastern China

Chinese Birds ◽  
2012 ◽  
Vol 3 (3) ◽  
pp. 206-216 ◽  
Author(s):  
Jinming LUO ◽  
Yongjie WANG ◽  
Fan YANG ◽  
Zhijun LIU
Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 941
Author(s):  
Nazia Mahtab ◽  
Lizhi Zhou ◽  
Fengling Zhang ◽  
Wei Wang

The “gut fungal microbiome” maintains the immune system, homeostasis, and various physiological functions of an organism. Different factors shape and affect gut fungal diversity and community composition, such as environment, habitat type, food resources, and seasons during migration. Wild birds amid migration are exposed to different habitats with different environments, available food resources, and seasons, which may substantially impact their gut fungal community composition and diversity. The hooded crane (Grus monacha) is a known migratory bird that migrates over long distances and is exposed to varied habitats with different environments and food types. We investigated the differences in gut fungal diversity and community composition between wintering and stopover sites amid three migratory seasons. We deduced the gut fungal pathogenic diversity and community composition during winter, fall, and spring by using high throughput sequencing (Illumina Mi-seq), and the internal transcribed region 2 (ITS2) was examined. Samples were collected from Shengjin Lake in the winter and Lindian during the fall and spring. The dominant fungal phyla found across the three seasons were Ascomycota, Basidiomycota, Zygomycota, and Rozellomycota. The gut fungal alpha diversity showed significant shifts during winter at the wintering site compared with the fall and spring seasons at the stopover site. The fungal community composition exhibited a significant change across the three seasons (ANOSIM p = 0.001). The results also demonstrated that the diversity and relative abundance of potential pathogens also showed divergence in winter compared to fall and spring. This study provides the basis for understanding the discrepancy in gut fungal diversity and community composition during migratory seasons at both wintering and stopover grounds. It also suggests that conservation measures should be applied to the conservation of hooded cranes and other wild birds, as the risk of cross-infection increases during seasonal migration.


Animals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 701 ◽  
Author(s):  
Fengling Zhang ◽  
Xingjia Xiang ◽  
Yuanqiu Dong ◽  
Shaofei Yan ◽  
Yunwei Song ◽  
...  

Intestinal bacterial communities form an integral component of the organism. Many factors influence gut bacterial community composition and diversity, including diet, environment and seasonality. During seasonal migration, birds use many habitats and food resources, which may influence their intestinal bacterial community structure. Hooded crane (Grus monacha) is a migrant waterbird that traverses long distances and occupies varied habitats. In this study, we investigated the diversity and differences in intestinal bacterial communities of hooded cranes over the migratory seasons. Fecal samples from hooded cranes were collected at a stopover site in two seasons (spring and fall) in Lindian, China, and at a wintering ground in Shengjin Lake, China. We analyzed bacterial communities from the fecal samples using high throughput sequencing (Illumina Mi-seq). Firmicutes, Proteobacteria, Tenericutes, Cyanobacteria, and Actinobacteria were the dominant phyla across all samples. The intestinal bacterial alpha-diversity of hooded cranes in winter was significantly higher than in fall and spring. The bacterial community composition significantly differed across the three seasons (ANOSIM, P = 0.001), suggesting that seasonal fluctuations may regulate the gut bacterial community composition of migratory birds. This study provides baseline information on the seasonal dynamics of intestinal bacterial community structure in migratory hooded cranes.


2003 ◽  
Vol 18 (3) ◽  
pp. 321-329 ◽  
Author(s):  
Zhijun Ma ◽  
Bo Li ◽  
Kai Jing ◽  
Bin Zhao ◽  
Shimin Tang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document