scholarly journals EFFECT OF SALT (NaCl) ON PHOTOSYNTHESIS AND CARBOHYDRATES IN LEAVES OF TWO RAGI (ELEUSINE CORACANA (L.) GAERTN) VARIETIES

2021 ◽  
Vol 21 (No 1) ◽  
Author(s):  
R. Desingh ◽  
G. Kanagaraj

Salinity is one of the most widespread environmental threats to global crop production, especially in arid and semi-arid regions. Photosynthesis and carbohydrates were determined in two ragi (Eleusine coracana (L.) Gaertn) varieties (CO13 and PAIYUR-1), subjected to salt stress of different concentrations (0, 40, 80 and 120mM). Salinity was given as a basal dose and sampling was done in leaves on 30th Days. After Treatment (DAT). There was a marked variation in the photosynthetic rates and ribulose-1, 5-bisphosphate carboxylase activity between the two ragi varieties subjected to salt stress. Photosystem II (PSII) and sucrose phosphate synthase activities were also significantly reduced as measured by salt stressed conditions. The quantity of glucose and sucrose decreased with increasing salt stress while starch showed a reverse trend under salt-stressed conditions. The results revealed that CO-13 exhibits higher photosynthetic rates and activities of ribulose-1,5-bisphosphate carboxylase, sucrose phosphate synthase with photochemical efficiency of PSII compared to PAIYUR-1

2014 ◽  
Vol 80 (18) ◽  
pp. 5672-5679 ◽  
Author(s):  
Shigeki Ehira ◽  
Satoshi Kimura ◽  
Shogo Miyazaki ◽  
Masayuki Ohmori

ABSTRACTThe filamentous, nitrogen-fixing cyanobacteriumAnabaenasp. strain PCC 7120 accumulates sucrose as a compatible solute against salt stress. Sucrose-phosphate synthase activity, which is responsible for the sucrose synthesis, is increased by salt stress, but the mechanism underlying the regulation of sucrose synthesis remains unknown. In the present study, a response regulator, OrrA, was shown to control sucrose synthesis. Expression ofspsA, which encodes a sucrose-phosphate synthase, andsusAandsusB, which encode sucrose synthases, was induced by salt stress. In theorrAdisruptant, salt induction of these genes was completely abolished. The cellular sucrose level of theorrAdisruptant was reduced to 40% of that in the wild type under salt stress conditions. Moreover, overexpression oforrAresulted in enhanced expression ofspsA,susA, andsusB, followed by accumulation of sucrose, without the addition of NaCl. We also found that SigB2, a group 2 sigma factor of RNA polymerase, regulated the early response to salt stress under the control of OrrA. It is concluded that OrrA controls sucrose synthesis in collaboration with SigB2.


1984 ◽  
Vol 34 (3) ◽  
pp. 247-252 ◽  
Author(s):  
Thomas W. Rufty ◽  
Steven C. Huber ◽  
Phillip S. Kerr

PLoS ONE ◽  
2017 ◽  
Vol 12 (10) ◽  
pp. e0186650 ◽  
Author(s):  
Juan Wang ◽  
Junjie Du ◽  
Xiaopeng Mu ◽  
Pengfei Wang

The use of elasticity coefficients and flux-control coefficients in a quantitative treatment of control is discussed, with photosynthetic sucrose synthesis as an example. Experimental values for elasticities for the cytosolic fructose 1,6-bisphosphatase and sucrose phosphate synthase are derived from their in vitro properties, and from an analysis of the in vivo relation between fluxes and metabolite levels. An empirical factor α , describing the response of the fructose 2,6-bisphosphate regulator cycle to fructose 6-phosphate is described, and an expression is derived relating α to the elasticities of the enzymes involved in this regulator cycle. The in vivo values for elasticities and α are then used in a modified form of the connectivity theorem to estimate the flux control coefficients of the cytosolic fructose 1,6-bisphosphatase and sucrose phosphate synthase during rapid photosynthetic sucrose synthesis.


1992 ◽  
Vol 283 (3) ◽  
pp. 877-882 ◽  
Author(s):  
J L A Huber ◽  
S C Huber

We recently reported [Huber, Huber & Nielsen (1989) Arch. Biochem. Biophys. 270, 681-690] that spinach (Spinacia oleracea L.) sucrose-phosphate synthase (SPS; EC 2.4.1.14) was phosphorylated in vivo when leaves were fed [32P]Pi. In vitro the enzyme was phosphorylated and inactivated by using [gamma-32P]ATP. We now report that SPS is phosphorylated both in vivo and in vitro on serine residues. The protein is phosphorylated at multiple sites both in vivo and in vitro as indicated by two-dimensional peptide maps of the immunopurified SPS protein. After being fed with radiolabel, leaves were illuminated or given mannose (which activates the enzyme), in the presence or absence of okadaic acid. Feeding okadaic acid to leaves decreased the SPS activation state in the dark and light and in leaves fed mannose. Across all the treatments, the activation state of SPS in situ was inversely related to the labelling of two phosphopeptides (designated phosphopeptides 5 and 7). These two phosphopeptides are phosphorylated when SPS is inactivated in vitro with [gamma-32P]ATP, and thus are designated as regulatory (inhibitory) sites [Huber & Huber (1991) Biochim. Biophys. Acta 1091, 393-400]. Okadaic acid increased the total 32P-labelling of SPS and in particular increased labelling of the two regulatory sites, which explains the decline in activation state. In the presence of okadaic acid, two cryptic phosphorylation sites became labelled in vivo that were not apparent in the absence of the inhibitor. Overall, the results suggest that light/dark regulation of SPS activity occurs as a result of regulatory serine phosphorylation. Multiple sites are phosphorylated in vivo, but two sites in particular appear to regulate activity and dephosphorylation of these sites in vivo is sensitive to okadaic acid.


Sign in / Sign up

Export Citation Format

Share Document