photosynthetic rates
Recently Published Documents


TOTAL DOCUMENTS

390
(FIVE YEARS 35)

H-INDEX

49
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Sean M. Robertson ◽  
Solihu Kayode Sakariyahu ◽  
Ayooluwa J. Bolaji ◽  
Mark F Belmonte ◽  
Olivia Wilkins

Drought stress negatively impacts the health of long-lived trees. Understanding the genetic mechanisms that underpin response to drought stress is requisite for selecting or enhancing climate change resilience. We aimed to determine how hybrid poplars respond to prolonged and uniform exposure to drought; how responses to moderate and more severe growth-limiting drought stresses differed; and, how drought responses change throughout the day. We established hybrid poplar trees (Populus x 'Okanese') from unrooted stem cutting with abundant soil moisture for six weeks. We then withheld water to establish well-watered, moderate, and severe growth-limiting drought conditions. These conditions were maintained for three weeks during which growth was monitored. We then measured photosynthetic rates and transcriptomes of leaves that had developed during the drought treatments at two times of day. The moderate and severe drought treatments elicited distinct changes in growth and development, photosynthetic rates, and global transcriptome profiles. Notably, the time of day of sampling produced the strongest signal in the transcriptome data. The moderate drought treatment elicited global transcriptome changes that were intermediate to the severe and well-watered treatments in the early evening, but did not elicit a strong drought response in the morning, emphasizing the complex nature of drought regulation in long-lived trees.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0255896
Author(s):  
Chongyang Li ◽  
Mingyang Ma ◽  
Tianpeng Zhang ◽  
Pengwen Feng ◽  
Xiao Chen ◽  
...  

Wheat (Triticum aestivum L.) is one of the most important crops in the world, but the yield and quality of wheat are highly susceptible to heat stress, especially during the grain-filling stage. Therefore, it is crucial to select high-yield and high-temperature-resistant varieties for food cultivation. There is a positive correlation between the yield and photosynthetic rate of wheat during the entire grain-filling stage, but few studies have shown that lines with high photosynthetic rates can maintain higher thermotolerance at the same time. In this study, two pairs of wheat near isogenic lines (NILs) with different photosynthetic rates were used for all experiments. Our results indicated that under heat stress, lines with a high photosynthetic rate could maintain the activities of photosystem II (PSII) and key Calvin cycle enzymes in addition to their higher photosynthetic rates. The protein levels of D1 and HSP70 were significantly increased in the highly photosynthetic lines, which contributed to maintaining high photosynthetic rates and ensuring the stability of the Calvin cycle under heat stress. Furthermore, we found that lines with a high photosynthetic rate could maintain high antioxidant enzyme activity to scavenge reactive oxygen species (ROS) and reduce ROS accumulation better than lines with a low photosynthetic rate under high-temperature stress. These findings suggest that lines with high photosynthetic rates can maintain a higher photosynthetic rate despite heat stress and are more thermotolerant than lines with low photosynthetic rates.


2021 ◽  
Author(s):  
◽  
Tiffany Bock

<p>Anthopleura aureoradiata, a common sea anemone of New Zealand's intertidal mudflats and rocky shores, hosts symbiotic dinoflagellates of the genus Symbiodinium. This study investigated the control of photosynthetic carbon translocation in this symbiosis, and in particular the presence and operation of socalled 'host release factor' (HRF). Evidence for HRF exists in a number other algalinvertebrate symbioses, where tissue extracts of the host stimulate carbon release by isolated algal symbionts. However, its identity remains elusive and it has never been studied before in A. aureoradiata. Translocation of photosynthetically-fixed carbon in the intact symbiosis and in the presence of host tissue extract was measured using a 14C label. Zooxanthellae in the intact symbiosis released around 40% of their photosynthetically-fixed carbon to the anemone. Isolated zooxanthellae, however, translocated only 8%, even less than the amount of photosynthate liberated by zooxanthellae in FSW alone (11%). Photosynthetic rates per algal cell were similar in the intact symbiosis and both host homogenate and FSW incubations, meaning that the total amount of photosynthetically-fixed carbon released (in pg C/cell/h) by the zooxanthellae in these different situations reflected the %translocation values. Given the failure of homologous zooxanthellae (i.e. those from A. aureoradiata) to respond to homogenized host tissue, it was tested whether zooxanthellae from other host species (i.e. cultured heterologous algae) responded. Heterologous zooxanthellae representing 5 clades (A-E) of Symbiodinium were incubated in host tissue homogenate and photosynthate release again measured with 14C. The %translocation varied from 12-51% in A. aureoradiata homogenate and 17-67% in FSW, again suggesting a lack of an active HRF in the homogenized tissues of this sea anemone. Photosynthetic rates amongst the different heterologous algae also varied widely with, for instance, freshly isolated zooxanthellae from A. aureoradiata having 6-fold higher photosynthetic rates than cultured algae from the same clade (clade A). The zooxanthellae of A. aureoradiata are known to be N-sufficient in the field, and studies with other species have demonstrated that N-deficient zooxanthellae release more photosynthate in response to HRF than do N-sufficient ones. Therefore, induction of an HRF effect was attempted by starving sea anemones, and hence their zooxanthellae, prior to incubation of freshly isolated zooxanthellae in homogenized tissue. However, even after 8 weeks of starvation, the zooxanthellae showed no signs of N-deficiency (as indicated by the extent to which ammonium enhanced the rate of dark 14C fixation), meaning that the relationship with HRF activity could not be examined. The ability of these temperate zooxanthellae to maintain their Nsufficiency, even after relatively long periods of food deprivation, may indicate a lower reliance on host feeding for nitrogen than is seen in tropical zooxanthellae, or a greater capacity to use internal stores of nitrogen. The lack of photosynthate release by both homologous and heterologous zooxanthellae in host homogenate, as opposed to substantial carbon released in the intact symbiosis, suggests that control of carbon translocation in A. aureoradiata is not related to the activity of an HRF; alternatively, if an HRF is present, its activity is hindered when the symbiosis is disrupted. Further study is needed to determine what is responsible for the control of photosynthate translocation in the A. aureoradiata-Symbiodinium symbiosis.</p>


2021 ◽  
Author(s):  
◽  
Tiffany Bock

<p>Anthopleura aureoradiata, a common sea anemone of New Zealand's intertidal mudflats and rocky shores, hosts symbiotic dinoflagellates of the genus Symbiodinium. This study investigated the control of photosynthetic carbon translocation in this symbiosis, and in particular the presence and operation of socalled 'host release factor' (HRF). Evidence for HRF exists in a number other algalinvertebrate symbioses, where tissue extracts of the host stimulate carbon release by isolated algal symbionts. However, its identity remains elusive and it has never been studied before in A. aureoradiata. Translocation of photosynthetically-fixed carbon in the intact symbiosis and in the presence of host tissue extract was measured using a 14C label. Zooxanthellae in the intact symbiosis released around 40% of their photosynthetically-fixed carbon to the anemone. Isolated zooxanthellae, however, translocated only 8%, even less than the amount of photosynthate liberated by zooxanthellae in FSW alone (11%). Photosynthetic rates per algal cell were similar in the intact symbiosis and both host homogenate and FSW incubations, meaning that the total amount of photosynthetically-fixed carbon released (in pg C/cell/h) by the zooxanthellae in these different situations reflected the %translocation values. Given the failure of homologous zooxanthellae (i.e. those from A. aureoradiata) to respond to homogenized host tissue, it was tested whether zooxanthellae from other host species (i.e. cultured heterologous algae) responded. Heterologous zooxanthellae representing 5 clades (A-E) of Symbiodinium were incubated in host tissue homogenate and photosynthate release again measured with 14C. The %translocation varied from 12-51% in A. aureoradiata homogenate and 17-67% in FSW, again suggesting a lack of an active HRF in the homogenized tissues of this sea anemone. Photosynthetic rates amongst the different heterologous algae also varied widely with, for instance, freshly isolated zooxanthellae from A. aureoradiata having 6-fold higher photosynthetic rates than cultured algae from the same clade (clade A). The zooxanthellae of A. aureoradiata are known to be N-sufficient in the field, and studies with other species have demonstrated that N-deficient zooxanthellae release more photosynthate in response to HRF than do N-sufficient ones. Therefore, induction of an HRF effect was attempted by starving sea anemones, and hence their zooxanthellae, prior to incubation of freshly isolated zooxanthellae in homogenized tissue. However, even after 8 weeks of starvation, the zooxanthellae showed no signs of N-deficiency (as indicated by the extent to which ammonium enhanced the rate of dark 14C fixation), meaning that the relationship with HRF activity could not be examined. The ability of these temperate zooxanthellae to maintain their Nsufficiency, even after relatively long periods of food deprivation, may indicate a lower reliance on host feeding for nitrogen than is seen in tropical zooxanthellae, or a greater capacity to use internal stores of nitrogen. The lack of photosynthate release by both homologous and heterologous zooxanthellae in host homogenate, as opposed to substantial carbon released in the intact symbiosis, suggests that control of carbon translocation in A. aureoradiata is not related to the activity of an HRF; alternatively, if an HRF is present, its activity is hindered when the symbiosis is disrupted. Further study is needed to determine what is responsible for the control of photosynthate translocation in the A. aureoradiata-Symbiodinium symbiosis.</p>


2021 ◽  
Author(s):  
Luana Lume Yoshida ◽  
Irineu Bianchini ◽  
Marcela Bianchessi da Cunha-Santino

Abstract This study analyzed the photosynthetic rates (by the light and dark bottle method) of the submerged macrophyte Egeria densa in the presence of three concentrations of glitter: 0.0235 g (T1/T4), 0.0117 g (T2/T5) and 0.0058 g (T3/T6), as well in its absence (control treatment, CT1 and CT2). About 800 apical fragments of E. densa were distributed in 8 subtreatments (4 under light conditions and 4 in the dark to obtain respiration), with 100 specimens in each. The CT showed the highest net photosynthesis rate (PN = gross photosynthetic (PG) rate subtracted from respiration (RD)) of E. densa, with 59.3%, 32.8%, 13.0% higher compared to T1, T2 and T3, respectively. At T3 it was observed the highest mean respiration rate (RE) o E. densa and at T1, the lowest. Comparing PN with RD, we found that the photosynthetic process was, on average 3.5, 2.47, and 2.93 times higher in CT, T1, T2, and T3, respectively. The presence of glitter may have increased the reflectance of water, as it is a suspended particle and reflected light intensely, considering that it is a metal coated particle. Glitter reflects radiation, decreasing the light absorption process, compromising the use of underwater radiation by E. densa. The microplastic interferes with the absorption of light necessary for photosynthetic processes, reducing them, enabling an imbalance in the ecosystem.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1572
Author(s):  
Rafa Tasnim ◽  
Yong-Jiang Zhang

Wild lowbush blueberries, an important fruit crop native to North America, contribute significantly to the economy of Maine, USA, Atlantic Canada, and Quebec. However, its photosynthetic capacity has not been well-quantified, with only a few studies showing its low photosynthetic rates. Its small leaves make accurate leaf-level photosynthetic measurements difficult and introduce potential uncertainties in using large leaf chambers. Here, we determined the photosynthetic rate for five different wild blueberry genotypes using a big leaf chamber enclosing multiple leaves and a small leaf chamber with a single leaf to test whether using big leaf chambers (branch-level measurements) underestimates the photosynthetic capacity. Photosynthetic rates of wild blueberries were significantly (35–47%) lower when using the big leaf chamber, and they are not a crop with low photosynthetic capacity, which can be as high as 16 μmol m−2 s−1. Additionally, wild blueberry leaves enclosed in the big chamber at different positions of a branch did not differ in chlorophyll content and photosynthetic rate, suggesting that the difference was not caused by variation among leaves but probably due to leaf orientations and self-shading in the big chamber. A significant linear relationship between the photosynthetic rate measured by the small and big leaf chambers suggests that the underestimation in leaf photosynthetic capacity could be corrected. Therefore, chamber-size effects need to be considered in quantifying photosynthetic capacity for small-leaf crops, and our study provided important guidelines for future photosynthesis research. We also established the relationship between the Electron Transport Rate (ETR) and photosynthetic CO2 assimilation for wild blueberries. ETR provides an alternative to quantify photosynthesis, but the correlation coefficient of the relationship (R2 = 0.65) suggests that caution is needed in this case.


2021 ◽  
Vol 12 ◽  
Author(s):  
Denis Okello ◽  
Sungyu Yang ◽  
Richard Komakech ◽  
Endang Rahmat ◽  
Yuseong Chung ◽  
...  

Aspilia africana (Pers.) C. D. Adams is an important medicinal plant, that has been used as traditional medicine in many African countries for the treatment of various health problems, including inflammatory conditions, osteoporosis, tuberculosis, cough, measles, diabetes, diarrhea, malaria, and wounds. We developed an efficient and reproducible protocol for in vitro regeneration of A. africana from nodes. We assessed the effects of plant tissue culture media on A. africana growth, cytokinins for in vitro shoot regeneration and proliferation, and auxins for the rooting of regenerated shoots. Furthermore, chlorophyll content, photosynthetic rates, anatomy (leaves, stems, and roots), and Fourier transform near-infrared (FT-NIR) spectra (leaves, stems, and roots) of the in vitro regenerated and maternal A. africana plants were compared. Murashige and Skoog media, containing vitamins fortified with benzylaminopurine (BA, 1.0 mg/l), regenerated the highest number of shoots (13.0 ± 0.424) from A. africana nodal segments. 1-naphthaleneacetic acid (NAA, 0.1 mg/l) produced up to 13.10 ± 0.873 roots, 136.35 ± 4.316 mm length, and was the most efficient for rooting. During acclimatization, the in vitro regenerated A. africana plants had a survival rate of 95.7%, displaying normal morphology and growth features. In vitro regenerated and mother A. africana plants had similar chlorophyll contents, photosynthetic rates, stem and root anatomies, and FT-NIR spectra of the leaf, stem, and roots. The established regeneration protocol could be used for large-scale multiplication of the plant within a short time, thus substantially contributing to its rapid propagation and germplasm preservation, in addition to providing a basis for the domestication of this useful, high-value medicinal plant.


2021 ◽  
Vol 21 (No 1) ◽  
Author(s):  
R. Desingh ◽  
G. Kanagaraj

Salinity is one of the most widespread environmental threats to global crop production, especially in arid and semi-arid regions. Photosynthesis and carbohydrates were determined in two ragi (Eleusine coracana (L.) Gaertn) varieties (CO13 and PAIYUR-1), subjected to salt stress of different concentrations (0, 40, 80 and 120mM). Salinity was given as a basal dose and sampling was done in leaves on 30th Days. After Treatment (DAT). There was a marked variation in the photosynthetic rates and ribulose-1, 5-bisphosphate carboxylase activity between the two ragi varieties subjected to salt stress. Photosystem II (PSII) and sucrose phosphate synthase activities were also significantly reduced as measured by salt stressed conditions. The quantity of glucose and sucrose decreased with increasing salt stress while starch showed a reverse trend under salt-stressed conditions. The results revealed that CO-13 exhibits higher photosynthetic rates and activities of ribulose-1,5-bisphosphate carboxylase, sucrose phosphate synthase with photochemical efficiency of PSII compared to PAIYUR-1


2021 ◽  
Vol 193 (2) ◽  
Author(s):  
N. Lele ◽  
M. K. Kripa ◽  
M. Panda ◽  
S. K. Das ◽  
A. Hari Nivas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document