scholarly journals Synthesis, characterization and crystal structure of a novel tetranuclear Co(II) cubane cluster

2019 ◽  
Vol 10 (3) ◽  
pp. 256-262
Author(s):  
Hong Chen ◽  
Jianchun Wu ◽  
Mingguo Liu

A new tetranuclear Co(II) cubane cluster 1, [Co4(L1)4(L2)4]·4CH3CH2OH (HL1 = 2-Methylquinolin-8-ol, HL2 = t-Bu-COOH), has been synthesized and characterized by X-ray single crystal diffraction, FT-IR, TG/DSC, and elementary analysis. The data reveals that it has a very interesting structural motif consisting of a [Co4O4] core in the form of a cube with the Co and O occupying opposite corners. In the crystal structure of complex 1, the molecules are linked by intramolecular C−H···O hydrogen bonding interactions and Van der Waals forces, forming a three-dimensional network structure. Crystal data for complex 1: C60H68Co4N4O12, triclinic, space group P-1 (no. 2), with a = 12.0644(4), b = 12.0996(3), c = 20.2858(7) Å, α = 92.005(3)o, β = 92.182(3)°, γ = 97.943(3)°, Z = 2, V = 2928.25(16) Å3, T = 293 K, μ(MoKα) = 1.178 mm-1, Dcalc = 1.444 g/cm3, 16737 reflections measured (3.00° ≤ θ ≤ 28.53°), 9010 unique (Rint = 0.024, Rsigma = 0.0574) which were used in all calculations. The final R1 was 0.039 (I≥2σ(I)) and wR2 was 0.090 (all data).

2006 ◽  
Vol 62 (4) ◽  
pp. m796-m798 ◽  
Author(s):  
Zerrin Heren ◽  
Cem Cüneyt Ersanlı ◽  
Cem Keser ◽  
Nazan Ocak Ískeleli

The crystal structure of the title compound, [Co(C6H4NO2)2(H2O)2]·2H2O, has been reinvestigated with improved precision [previous reports: Chang et al. (1972). J. Coord. Chem. 2, 31–34; Lumme et al. (1969). Suom. Kemistil. B, 42, 270]. In the title compound, the Co atom is located on an inversion center and its coordination can be described as slightly distorted octahedral, equatorially trans-coordinated by two N and O atoms of two picolinate ligands and axially coordinated by two O atoms of the water molecules. Intermolecular O—H...O and C—H...O hydrogen-bonding interactions result in the formation of an intricate three-dimensional network.


2015 ◽  
Vol 71 (1) ◽  
pp. 48-52 ◽  
Author(s):  
José J. Campos-Gaxiola ◽  
Susana P. Arredondo Rea ◽  
Ramón Corral Higuera ◽  
Herbert Höpfl ◽  
Adriana Cruz Enríquez

Two organic–inorganic hybrid compounds have been prepared by the combination of the 4-[(E)-2-(pyridin-1-ium-2-yl)ethenyl]pyridinium cation with perhalometallate anions to give 4-[(E)-2-(pyridin-1-ium-2-yl)ethenyl]pyridinium tetrachloridocobaltate(II), (C12H12N2)[CoCl4], (I), and 4-[(E)-2-(pyridin-1-ium-2-yl)ethenyl]pyridinium tetrachloridozincate(II), (C12H12N2)[ZnCl4], (II). The compounds have been structurally characterized by single-crystal X-ray diffraction analysis, showing the formation of a three-dimensional network throughX—H...ClnM−(X= C, N+;n= 1, 2;M= CoII, ZnII) hydrogen-bonding interactions and π–π stacking interactions. The title compounds were also characterized by FT–IR spectroscopy and thermogravimetric analysis (TGA).


Author(s):  
Yukiko Yamaguchi-Terasaki ◽  
Takashi Fujihara ◽  
Akira Nagasawa ◽  
Sumio Kaizaki

In the neutral complex molecule of the title compound,fac-[CrCl3(tpa)] [tpa is tris(pyridin-2-yl)amine; C15H12N4], the CrIIIion is bonded to three N atoms that are constrained to afacialarrangement by the tpa ligand and by three chloride ligands, leading to a distorted octahedral coordination sphere. The average Cr—N and Cr—Cl bond lengths are 2.086 (5) and 2.296 (4) Å, respectively. The complex molecule is located on a mirror plane. In the crystal, a combination of C—H...N and C—H...Cl hydrogen-bonding interactions connect the molecules into a three-dimensional network.


2007 ◽  
Vol 63 (3) ◽  
pp. m761-m763 ◽  
Author(s):  
Yan Jiao ◽  
Zhao-Rui Pan ◽  
Zhi-Jie Fang ◽  
Yi-Zhi Li ◽  
He-Gen Zheng

In the crystal structure of the title compound, [Ni(C6H4N2O4S)(H2O)3]·2.5H2O, the NiII atom is six-coordinated by one 2-(6-oxido-4-oxo-3,4-dihydropyimidin-2-ylsulfanyl)acetate ligand and three water molecules. Hydrogen-bonding interactions between the coordinated and uncoordinated water molecules and between the water molecules and the organic ligand result in a three-dimensional network structure.


Author(s):  
Nina R. Marogoa ◽  
D.V. Kama ◽  
Hendrik G. Visser ◽  
M. Schutte-Smith

Each central platinum(II) atom in the crystal structures of chlorido[dihydroxybis(1-iminoethoxy)arsanido-κ3 N,As,N′]platinum(II), [Pt(C4H10AsN2O4)Cl] (1), and of chlorido[dihydroxybis(1-iminopropoxy)arsanido-κ3 N,As,N′]platinum(II), [Pt(C6H14AsN2O4)Cl] (2), is coordinated by two nitrogen donor atoms, a chlorido ligand and to arsenic, which, in turn, is coordinated by two oxygen donor ligands, two hydroxyl ligands and the platinum(II) atom. The square-planar and trigonal–bipyramidal coordination environments around platinum and arsenic, respectively, are significantly distorted with the largest outliers being 173.90 (13) and 106.98 (14)° for platinum and arsenic in (1), and 173.20 (14)° and 94.20 (9)° for (2), respectively. One intramolecular and four classical intermolecular hydrogen-bonding interactions are observed in the crystal structure of (1), which give rise to an infinite three-dimensional network. A similar situation (one intramolecular and four classical intermolecular hydrogen-bonding interactions) is observed in the crystal structure of (2). Various π-interactions are present in (1) between the platinum(II) atom and the centroid of one of the five-membered rings formed by Pt, As, C, N, O with a distance of 3.7225 (7) Å, and between the centroids of five-membered (Pt, As, C, N, O) rings of neighbouring molecules with distances of 3.7456 (4) and 3.7960 (6) Å. Likewise, weak π-interactions are observed in (2) between the platinum(II) atom and the centroid of one of the five-membered rings formed by Pt, As, C, N, O with a distance of 3.8213 (2) Å, as well as between the Cl atom and the centroid of a symmetry-related five-membered ring with a distance of 3.8252 (12) Å. Differences between (2) and the reported polymorph [Miodragović et al. (2013). Angew. Chem. Int. Ed. 52, 10749–10752] are discussed.


2015 ◽  
Vol 71 (10) ◽  
pp. 1262-1265
Author(s):  
Peter Frenzel ◽  
Dieter Schaarschmidt ◽  
Alexander Jakob ◽  
Heinrich Lang

In the title compound, [{[(C6H5)3P]Ag}4{NCO}4], a distorted Ag4N4-heterocubane core is set up by four AgIions being coordinated by the N atoms of the cyanato anions in aμ3-bridging mode. In addition, a triphenylphosphine ligand is datively bonded to each of the AgIions. Intramolecular Ag...Ag distances as short as 3.133 (9) Å suggest the presence of argentophilic (d10...d10) interactions. Five moderate-to-weak C—H...O hydrogen-bonding interactions are observed in the crystal structure, spanning a three-dimensional network. A region of electron density was treated with the SQUEEZE procedure inPLATON[Spek (2015).Acta Cryst.C71, 9–18] following unsuccessful attempts to model it as being part of disordered tetrahydrofuran solvent molecules. The given chemical formula and other crystal data do not take into account these solvent molecules.


2014 ◽  
Vol 70 (9) ◽  
pp. m339-m340
Author(s):  
Benson M. Kariuki ◽  
Abdul-Razak H. Al-Sudani

In the title compound, [Ni(C13H17N3)2]Cl2·3.5H2O, the geometry of the NiN6complex cation is slightly distorted octahedral, with a facial arrangement of the two tridentateN-[2-(dimethylamino)ethyl]quinolin-8-amine ligands around the metal ion. The asymmetric unit consists of two independent complex half-molecules located on centres of inversion, together with two chloride counter-anions and 3.5 water molecules of solvation, one of which is disordered across an inversion centre. In the crystal, O—H...O, O—H...Cl and N—H...Cl hydrogen-bonding interactions form a three-dimensional network structure.


Author(s):  
Thomas G. Müller ◽  
Florian Kraus

Di-μ-thiocyanato-bis[diamminesilver(I)], [Ag2(μ-SCN)2(NH3)4], was synthesized by the reaction of AgSCN with anhydrous liquid ammonia. In the binuclear molecule, the AgIatom is coordinated by two ammine ligands and the S atom of one thiocyanate ligand. Two of these [Ag(SCN)(NH3)2] units are bridged by the S atoms of the thiocyanate anions at longer distances, leading to a dimer with point group symmetryC2. The distance between the AgIatoms in the dimer is at 3.0927 (6) Å within the range of argentophilic interactions. The crystal structure displays N—H...N and N—H...S hydrogen-bonding interactions that build up a three-dimensional network.


2017 ◽  
Vol 73 (11) ◽  
pp. 1003-1009 ◽  
Author(s):  
Ning Li ◽  
Binrong Yao ◽  
Chunhua Wang ◽  
Qingguo Meng ◽  
Guige Hou

Four new 3,4-dihydro-1-benzoxepin-5(2H)-one derivatives, namely (E)-4-(5-bromo-2-hydroxybenzylidene)-6,8-dimethoxy-3,4-dihydrobenzo[b]oxepin-5(2H)-one, (7), (E)-4-[(E)-3-(5-bromo-2-hydroxyphenyl)allylidene]-6,8-dimethoxy-3,4-dihydrobenzo[b]oxepin-5(2H)-one, (8), (E)-4-(5-bromo-2-hydroxybenzylidene)-6-hydroxy-8-methoxy-3,4-dihydrobenzo[b]oxepin-5(2H)-one, C18H15BrO5, (9), and (E)-4-[(E)-3-(5-bromo-2-hydroxyphenyl)allylidene]-6-hydroxy-8-methoxy-3,4-dihydrobenzo[b]oxepin-5(2H)-one, (10), have been synthesized and characterized by FT–IR, NMR and MS. The structure of (9) was confirmed by single-crystal X-ray diffraction. Crystal structure analysis shows that molecules of (9) are connected into a one-dimensional chain in the [010] direction through classical hydrogen bonds and these chains are further extended into a three-dimensional network via C—H...O interactions. The inhibitory activities of these compounds against protein–tyrosine kinases (PTKs) show that 6-hydroxy-substituted compounds (9) and (10) are more effective for inhibiting ErbB1 and ErbB2 than are 6-methoxy-substituted compounds (7) and (8). This may be because (9) and (10) could effectively bind to the active pockets of the protein through intermolecular interactions.


1996 ◽  
Vol 51 (8) ◽  
pp. 1079-1083 ◽  
Author(s):  
N. Stock ◽  
W. Schnick

Coarse crystalline (NH2)2(O)P-N=P(NH2)3 is obtained from a NH3 saturated CH2Cl2 suspension of (NH2)2(O)P-N=P(NH2)3 NH4Cl at room temperature. (NH2)2(O)P-N=P(NH2)3·NH4Cl is synthesized by slow addition of Cl2(O)P-N=PCl3 to a solution of NH3 in CH2Cl2 at -78 °C. Excess NH4Cl is removed by treatment with HNEt2 followed by extraction with CH2Cl2. The crystal structure of (NH2)2(O)P-N=P(NH2)3 has been determined by single crystal X-ray methods (P21/c; a = 1462.8(3), b = 944.8(2), c = 1026.9(2) pm, β = 110.69(3)°; Z = 8). In the unit cell there are two crystallographically unique molecules. They form a three dimensional network by intermolecular hydrogen bonding interactions (N-H···N ≥ 313 pm. N-H···O ≥ 293 pm). The investigation of the thermal properties shows decomposition with evolution of NH3 above 80 °C.


Sign in / Sign up

Export Citation Format

Share Document