scholarly journals Crystal and molecular structure of bis(N-(diethylcarbamothioyl)cyclohexane carboxamido)copper(II) complex

2020 ◽  
Vol 11 (4) ◽  
pp. 319-323
Author(s):  
Cemal Koray Ozer ◽  
Gun Binzet ◽  
Hakan Arslan

Herein, we describe the synthesis and characterization of bis(N-(diethylcarbamothioyl)cyclohexane carboxamido)copper(II) complex, cis-[Cu(L-κ2S,O)2], has been prepared by the reaction of N-(diethyl carbamothioyl)cyclohexanecarboxamide ligand with copper(II) acetate. The green colored crystals of the complex were obtained by slow evaporation of their dichloromethane:ethanol solution (2:1, v:v). The crystal structure of cis-[Cu(L-κ2S,O)2] was obtained by single-crystal X-ray diffraction. The crystal structure reveals an monoclinic C2 (no. 5) space group with cell parameters a = 14.848(3) Å, b = 10.543(2) Å, c = 10.511(2) Å, β = 123.84(3)°, V = 1366.7(7) Å3, Z = 2, T = 153(2) K, μ(MoKα) = 0.979 mm-1, Dcalc = 1.327 g/cm3, 4979 reflections measured (6.6° ≤ 2Θ ≤ 50.68°), 2243 unique (Rint = 0.0223, Rsigma = 0.0444) which were used in all calculations. The final R1 was 0.0225 (>2sigma(I)) and wR2 was 0.0490 (all data). The angular structural index parameter, τ4, is equal to 0.40, which confirms the distorted square planar geometry for the title compound. The puckering parameters (q2 = 0.015(3) Å, q3 = 0.576(3) Å, QT = 0.577(3) Å, θ = 1.6(3)° and φ = 20(11)°) of the title complex show that the cyclohexane ring adopts a chair conformation. The two ethyl groups of the diethyl amine group have anti-orientation with respect to one another. The crystal packing shows the molecules stacked in parallel sheets along [010], accompanied by C3-H3A···O1ⁱ (i -x, +y, 1-z) intermolecular contact.

2015 ◽  
Vol 30 (4) ◽  
pp. 357-361 ◽  
Author(s):  
Bruno Z. Mascaliovas ◽  
Fernando R.G. Bergamini ◽  
Alexandre Cuin ◽  
Pedro P. Corbi

Synthesis and structural characterization of a novel palladium Pd(II) complex with the amino acid L-citrulline (Cit, C6H13N3O3) are presented in this paper. Elemental analysis indicates a 1:2 metal/ligand molar composition for the complex, with the molecular formula PdC12H24N6O6. The compound was also characterized by infrared (IR) spectroscopic measurements and the crystal structure has been solved by powder X-ray diffraction data with simulated annealing strategy in real space. The Pd(II) complex crystallizes in the triclinic system with space group P-1 and cell parameters a = 4.6493(4) Å, b = 5.222(4) Å, c = 18.040(2) Å, α = 77.41(6)°, β = 94.72(7),° and γ = 101.45(7)°. The crystal structure confirms the presence of Pd(II) ions in a nearly square planar environment and the molecular formula with deprotonated citrulline as proposed by analytical and spectroscopic data.


2008 ◽  
Vol 72 (3) ◽  
pp. 771-783 ◽  
Author(s):  
L. Bindi ◽  
M. D. Welch ◽  
P. Bonazzi ◽  
G. Pratesi ◽  
S. Menchetti

AbstractThe crystal structure of seeligerite, Pb3IO4Cl3, from the San Rafael mine, Sierra Gorda, Chile, was solved in the space group Cmm2, and refined to R = 3.07%. The unit-cell parameters are: a = 7.971(2), b = 7.976(2), c = 27.341(5) Å, V = 1738.3(6) Å3 and Z = 8. The crystal structure consists of a stacking sequence along [001] of square-net layers of O atoms and square-net layers of Cl atoms with Pb+ and I+ cations located in the voids of the packing. As is typical of cations with a stereoactive lone-pair of electrons, Pb2+ and I5+ adopt strongly-asymmetrical configurations. Pb2+ cations occur in a variety of coordination polyhedra, ranging from anticubes and monocapped anticubes to pyramidal ‘one-sided’ coordinations. I5+ is coordinated by a square of four oxygen atoms: I1 and I3 exhibit a ‘one-sided’ coordination, whereas I2 has square-planar coordination.The TEM investigation has revealed additional superlattice reflections (which were not registered by X-ray diffraction (XRD)) in the hk0 diffraction pattern of seeligerite based upon a 0.158 Å-1 square net, which can be interpreted as arising from a 20-cation super-sheet motif (12.6 Å x 12.6 Å), likely related to a further level of Pb-I order superimposed upon the 8-site motif identified by XRD.


2010 ◽  
Vol 63 (2) ◽  
pp. 257 ◽  
Author(s):  
Gemma Aragay ◽  
Josefina Pons ◽  
Vicenç Branchadell ◽  
Jordi García-Antón ◽  
Xavier Solans ◽  
...  

In this paper, the synthesis and characterization of two new N-alkylaminopyrazole ligands, 1-[2-(ethylamino)ethyl]-3,5-diphenylpyrazole (dpea) and 1-[2-(octylamino)ethyl]-3,5-diphenylpyrazole (dpoa) are reported. The reaction of these ligands with [MCl2(CH3CN)2] (M = PdII, PtII) affords the following square planar complexes: cis-[MCl2(NN′)] (M = PdII: NN′ = dpea, 1; dpoa, 2; M = PtII: NN′ = dpea, 3; dpoa, 4). Reaction of [PdCl2(CH3CN)2] and dpea or dpoa in 1:2 M:NN′ molar ratio, in the presence of NaBF4, yields complexes [Pd(NN′)2](BF4)2 (NN′ = dpea, [5](BF4)2); dpoa, [6](BF4)2). The solid-state structures of complexes 1, 3, and [5](BF4)2 have been determined by single-crystal X-ray diffraction methods. In complexes 1 and 3, the dpea ligand is coordinated through the Npz and Namino atoms to the metallic centre, which completes its coordination with two chlorine atoms in a cis disposition. For complex [5](BF4)2, the crystal structure consists of cations involving a [Pd(Npz)2(Namino)2]2+ core with a cis disposition of the two dpea ligands in a square-planar geometry and BF4 – anions. Theoretical calculations were carried out to optimize the geometries of the cis and trans isomers of the [Pd(dpea)2]2+ cation and of the [Pd(dpea)2](BF4)2 complex. The results show that the trans isomer is the most stable for [Pd(dpea)2]2+, in contrast with the cis stereochemistry observed in the crystal structure of [Pd(dpea)2](BF4)2. The calculations also predict that in acetonitrile solution, the dissociation of this complex into the corresponding ions is thermodynamically favourable. The cis–trans isomerization process of [Pd(dpea)2]2+ in acetonitrile solution has been studied by NMR spectroscopy at different temperatures. These experimental results confirm that the trans isomer is the thermodynamically most stable form of the complexes [5](BF4)2 and [6](BF4)2.


2017 ◽  
Vol 73 (7) ◽  
pp. 1048-1051 ◽  
Author(s):  
Raphael Enoque Ferraz de Paiva ◽  
Douglas Hideki Nakahata ◽  
Pedro Paulo Corbi

A gold(III) salt of composition [AuCl2(C12H8N2)]PF6was prepared and characterized by elemental and mass spectrometric analysis (ESI(+)–QTOF–MS),1H nuclear magnetic resonance measurements and by single-crystal X-ray diffraction. The square-planar coordination sphere of AuIIIcomprises the bidentate 1,10-phenanthroline ligand and two chloride ions, with the AuIIIion only slightly shifted from the least-squares plane of the ligating atoms (r.m.s. = 0.018 Å). In contrast to two other previously reported AuIII-phenantroline structures that are stabilized by interactions involving the chlorido ligands, the packing of the title compound does not present these features. Instead, the hexafluoridophosphate counter-ion gives rise to anion...π interactions that are a crucial factor for the crystal packing.


2017 ◽  
Vol 14 (28) ◽  
pp. 66-71
Author(s):  
Gerson E. DELGADO ◽  
Lusbely BELANDRIA ◽  
Asiloé J. MORA ◽  
Julia BRUNO-COLMENÁREZ ◽  
Gustavo MARROQUÍN

The design of multicomponent crystals offers a means to modify the physicochemical properties of crystals without altering the chemical properties of a particular molecule. In this study, a multicomponent crystal, the salt of malonic acid with p-chloroaniline, was synthetized and structurally characterized. The title compound wasprepared by grinding in an agate mortar, and its structure was studied by powder and single-crystal X-ray diffraction. This compound crystallize in the monoclinic system with space group P21/c, Z = 4, and unit cell parameters a = 12.9776(7)Å, b = 9.2308(5)Å, c = 8.5170(5)Å, β = 93.474(3)°. The multicomponent compound, p-chloroanilinium semi-malonate, can be described as an ionic ensemble assisted by hydrogen bonds established between p-chloroanilinium cations and semi-malonate anions. The molecular structure and crystal packing are stabilized mainly by intermolecular O-H•••O and N-H•••O hydrogen bonds interactions. The molecules construct a supramolecular assembly with a two-dimensional hydrogen bonded network along the ca plane.


2007 ◽  
Vol 72 (5-6) ◽  
pp. 649-665 ◽  
Author(s):  
M. Fernanda N. N. Carvalho ◽  
Ana S. D. Ferreira ◽  
João L. Ferreira da Silva ◽  
Luís F. Veiros

3-Hydrazonocamphor, 3-(RR1NN)C10H14O (R = Me, R1 = H), undergoes intramolecular hydrogen bridging by coordination to platinum or palladium. This effect is evidenced by considerable decrease in the ν(C=O) frequency (compared to the free ligand) in the IR spectra of the complexes [MCl2L2] (M = Pd, Pt; L = 3-(RR1NN)C10H14O) as well as by the magnetic non- equivalence of the two ligands, as revealed by 13C NMR. DFT calculations indicate that coordination of 3-(Me(H)NN)C10H14O promotes E/Z isomerization of the hydrazono group of the ligand, inducing formation of intramolecular hydrogen bonding and corresponding stabilization of the complex. Characterization of the complexes [MCl2L2] (M = Pt; L: R, R1 = Me (1), R = Me, R1 = H (2) and M = Pd; L: R = Me, R1 = H (3)) was performed by analytical and spectroscopic techniques. Redox properties of the 3-hydazonocamphors and their complexes were studied by cyclic voltammetry. The structure of trans-[PtCl2{3-(Me2NN)C10H14O}2] was determined by single-crystal X-ray diffraction analysis. The complex has square-planar geometry and crystallizes in the tetragonal P43 space group.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Youssef Kandri Rodi ◽  
Santiago V. Luis ◽  
Inés Martí ◽  
Vicente Martí-Centelles ◽  
Younès Ouzidan

The crystal and molecular structure of 6-bromo-2-(furan-2-yl)-3-(prop-2-ynyl)-3H-imidazo[4,5-b]pyridine (C13H8BrN3O) has been investigated from single crystal X-ray diffraction data. The primary focus is to investigate the molecular geometry of this compound in the solid state along with the associated intermolecular hydrogen bonding and relatedπ-πinteractions present in the crystal packing. This compound crystallizes in the monoclinic space groupP21/nwith cell parameters:a= 4.39655(19) Å,b= 13.5720(5) Å,c= 20.0471(5) Å,β= 94.753(3),V= 1192.10(7) Å3,D= 1.683 g·cm−3, andZ= 4. The crystal structure is stabilized byπ-πinteractions and intermolecular C–H⋯N and C–H⋯O interactions.


Author(s):  
Hana Bashir Shawish ◽  
Mohd Jamil Maah ◽  
Siti Nadia Abdul Halim

Three nickel thiosemicarbazone mixed ligands complexes have been synthesized. Complexes with the formula [NiL(PPh3)]Cl, [Ni2L2(Phen)],[Ni2L2(Bpy)] (where L= 2,3,4-trihydroxybenzaldehydethiosemicarbazone, PPh3=Triphenylphosphine, Phen=1,10-phenanthroline, Bpy= 2,2 –Bipyridine)have been characterized by IR spectroscopy, as well as elemental analysis. The structure of [NiL (PPh3)]Cl has been determined by X-raycrystallography. The crystal structure of this complex shows that the Schiff base ligand functions as an N,O,S chelating anion to the phosphine –coordinated nickel(II) atom, which exists as a distorted square – planar geometry.


Author(s):  
Dohyun Moon ◽  
Jong-Ha Choi

The asymmetric unit of the title compound, [Ag(C24H46N6O2)](NO3)2 [C24H46N6O2 is (5,16-dimethyl-2,6,13,17-tetraazatricyclo[16.4.0.07,12]docosane-2,13-diyl)diacetamide, L], consists of one independent half of the [Ag(C24H46N6O2)]2+ cation and one nitrate anion. The Ag atom, lying on an inversion centre, has a square-planar geometry and the complex adopts a stable trans-III conformation. Interestingly, the two O atoms of the pendant acetamide groups are not coordinated to the AgII ion. The longer distance of 2.227 (2) Å for Ag—N(tertiary) compared to 2.134 (2) Å for Ag—N(secondary) may be due to the effects of the attached acetamide group on the tertiary N atom. Two nitrate anions are very weakly bound to the AgII ion in the axial sites and are further connected to the ligand of the cation by N—H...O hydrogen bonds. The crystal packing is stabilized by hydrogen-bonding interactions among the N—H donor groups of the macrocycle and its actetamide substituents, and the O atoms of the nitrate anions and of an acetamide group as the acceptor atoms.


2018 ◽  
Vol 69 (6) ◽  
pp. 1407-1410
Author(s):  
Adriana Corina Hangan ◽  
Alexandru Turza ◽  
Roxana Liana Stan ◽  
Luminita Simona Oprean

A new Cu(II) complex with N-sulfonamide ligand, [Cu(N-(5-(4-methylphenyl)-[1,3,4]-thiadiazole-2-yl)-toluenesulfonamidate)4]((CH3)2NH2+)2(complex) has been synthesized and characterized. The X-ray crystal structure of the complex has been determined. The Cu(II) ion is four-coordinated, forming a CuN4 chromophore. The ligand acts as monodentate, coordinating the metal ion through a single Nthiadiazole atom. The complex has a square planar geometry. The characterization of the complex has been studied by FT-IR, electronic, EPR spectroscopic and magnetic methods.


Sign in / Sign up

Export Citation Format

Share Document