scholarly journals Palaeontological surveys in Central Sumatra and Bangka

2021 ◽  
Vol 47 (3) ◽  
pp. 50-56
Author(s):  
Julien Louys ◽  
Yahdi Zaim ◽  
Yan Rizal ◽  
Gilbert J. Price ◽  
Aswan Aswan ◽  
...  

We report on results from surveys undertaken in Sumatra during 2018 and 2019. The surveys had three objectives: (1) to examine, sample, and record the extensive Quaternary fossil deposits from caves in West Sumatra; (2) determine the potential for fluvial deposits in Riau and Jambi provinces; and (3) relocate the fossil proboscidean remains reported from Bangka Island. Our surveys produced several significant results. We mapped three important Padang Highland caves, Ngalau Lida Ajer, Ngalau Sampit, and Ngalau Gupin, locating and sampling the main fossil deposits in each, as well as recording additional caves in the region. Our surveys of the fluvial systems in central-west Sumatra did not reveal any vertebrate Pleistocene deposits but did yield Mio-Pliocene trace fossils. Finally, we relocated elephant fossils from Bangka, but no in situ vertebrate remains could be found. These finds add important new data to the geological history of Sumatra.

1887 ◽  
Vol 4 (5) ◽  
pp. 220-225
Author(s):  
J. H. Collins

Botallaek Mine.—The dark hornblendic slates of the sea-border of the parish of St. Just are known to many geological tourists. They have been well described by the late Mr. J. A. Phillips,1 who regards them as consisting of altered killas ; and the justice of this conclusion will not I think be questioned by any who have studied the rocks in situ; traces of an original lamellar structure are visible even in hand-specimens. Phillips (op. cit. p. 322) gives the following analyses of the rock, a being from near the surface, and b from a depth of 130 fathoms, or far below the sea-level; while c is the analysis of a typical Cornish killas (from Polgooth Mine, 100 fathoms from surface):—


2012 ◽  
Vol 183 (4) ◽  
pp. 343-348 ◽  
Author(s):  
Liubov G. Bragina

Abstract The Troodos Ophiolite Complex of Cyprus is covered in places by an in-situ sedimentary sequence, the Perapedhi Formation, which is represented by umbers and radiolarian cherts. The age of the Perapedhi Formation has primary importance for an understanding of the geological history of Cyprus, the development of ophiolite assemblages and their structure. According to data obtained on radiolarian biostratigraphy, the Perapedhi Formation has a stratigraphic range from Middle - Upper Turonian to uppermost Santonian (Upper Cretaceous). Therefore, the formation of the Troodos Ophiolite Complex in the studied area ended before Middle Turonian times.


2021 ◽  
Vol 47 (3) ◽  
pp. 81-82
Author(s):  
Peter Wilf

Rainforests with the chinquapin Castanopsis and the yellowwood conifer Dacrycarpus occur today throughout Indonesia and the larger Malesian ecoregion, but they represent, in part, a history of survival stretching tens of millions of years and thousands of kilometers to the palaeo-Antarctic. Unlike New World and African tropical rainforests, the Malesian flora’s history is closely tied to tectonic introductions from exotic terranes, and thus, much palaeobotanical data about the origins of the Malesian rainforest comes from those terranes. For example, South America, Antarctica, and Australia remained adjacent until the Eocene final separation of Gondwana, and warm climates promoted high-latitude dispersals among those landmasses. Australia’s subsequent northward movement led to the late Oligocene Sahul-Sunda collision and the uplift of New Guinea, allowing the introductions into Malesia of survivor taxa that were once widespread in mesic Gondwanan rainforests. In Patagonian Argentina, the prolific Laguna del Hunco (52.2 Ma) site preserves abundant and well-preserved fossils of an unexpectedly large number of lineages whose living relatives characteristically associate in perhumid, lower montane “oak-laurel” rainforests of Malesia, especially in New Guinea. These taxa include the angiosperms Castanopsis (Fagaceae), Gymnostoma (rhu, Casuarinaceae), Alatonucula (extinct engelhardioid Juglandaceae), Eucalyptus (gums, Myrtaceae), Ceratopetalum (coachwood, Cunoniaceae), Lauraceae (laurel family), and Ripogonum (supplejack, Ripogonaceae); conifers in Cupressaceae (cypress family: Papuacedrus), Araucariaceae (dammars and relatives: Agathis and Araucaria Section Eutacta), and Podocarpaceae (yellowwoods: Dacrycarpus, Podocarpus, and a species similar to Phyllocladus); and the fern Todea (king fern, Osmundaceae). Many of these records are the only occurrences of the respective taxa in South America, living or fossil, vastly extending their past ranges and thus the biogeographic history of part of the Malesian mountain flora. The living-fossil taxa inhabit, and several dominate, critical watershed areas of high endemism and biodiversity in Malesia’s endangered tropical-montane rainforests. In Malesia itself, there have been very few Cenozoic palaeobotanical investigations for about a century or more. To remedy this situation and improve understanding of the evolution of the Malesian flora in situ, we have begun palaeobotanical fieldwork in collaboration with Professor Yahdi Zaim and ITB, along with international colleagues. So far, we have discovered several promising new fossil sites in the Eocene-Oligocene of West Sumatra (Sangkarewang and Sawahlunto formations) and South Kalimantan (Tanjung Formation), and I will report preliminary observations.


2014 ◽  
Vol 281 (1786) ◽  
pp. 20132624 ◽  
Author(s):  
Ben Thuy ◽  
Steffen Kiel ◽  
Alfréd Dulai ◽  
Andy S. Gale ◽  
Andreas Kroh ◽  
...  

Owing to the assumed lack of deep-sea macrofossils older than the Late Cretaceous, very little is known about the geological history of deep-sea communities, and most inference-based hypotheses argue for repeated recolonizations of the deep sea from shelf habitats following major palaeoceanographic perturbations. We present a fossil deep-sea assemblage of echinoderms, gastropods, brachiopods and ostracods, from the Early Jurassic of the Glasenbach Gorge, Austria, which includes the oldest known representatives of a number of extant deep-sea groups, and thus implies that in situ diversification, in contrast to immigration from shelf habitats, played a much greater role in shaping modern deep-sea biodiversity than previously thought. A comparison with coeval shelf assemblages reveals that, at least in some of the analysed groups, significantly more extant families/superfamilies have endured in the deep sea since the Early Jurassic than in the shelf seas, which suggests that deep-sea biota are more resilient against extinction than shallow-water ones. In addition, a number of extant deep-sea families/superfamilies found in the Glasenbach assemblage lack post-Jurassic shelf occurrences, implying that if there was a complete extinction of the deep-sea fauna followed by replacement from the shelf, it must have happened before the Late Jurassic.


1993 ◽  
Vol 40 ◽  
pp. 167-173
Author(s):  
Richard G. Bromley

The geological history of octopus is virtually unknown, owing to lack of a preservable skeleton. Several octopod species today are known to drill holes in prey animals for the injection of venom. These borings are incipient trace fossils that have good fossilization potential, and are named Oichnus ova/is isp. nov. Their abundance in Pliocene assemblages suggests that they will be recognized elsewhere in Tertiary and perhaps older assemblages, providing greatly needed data on the earlier range and feeding habits of octopus.


2000 ◽  
Vol 30 (3) ◽  
pp. 474-476 ◽  
Author(s):  
LUIZ JOSÉ TOMAZELLI ◽  
SÉRGIO REBELLO DILLENBURG ◽  
JORGE ALBERTO VILLWOCK

2018 ◽  
Vol 938 (8) ◽  
pp. 38-43
Author(s):  
S.A. Kotler ◽  
I.D. Zolnikov ◽  
D.V. Pchelnikov

The types of geological and geomorphological structure of the Katun valley are distinguished in the work. For this, a method of geoinformation mapping using morphometric indicators of the valley’s width and meandering of the channel was developed. The morphometric parameter of the valley’s width was calculated as the total area of terraces. As the morphometric parameters of the channel’s meandering, the angles of the river segments’ deviation relative to each other were calculated. Conjugated analysis of these morphometric indicators enabled identifying 18 morphotypes. These morphotypes according to the geological and geomorphological structure of the valley were combined into 4 classes. Separation of the Katun valley in certain classes and morphotypes is due to the different geological history of these sites during the Quaternary period. The most important reasons predetermining the modern variety of geological and geomorphological types of the valley are neotectonic movements and exogenous phenomena (glaciers, dam lakes, landslides, etc.) naturally localized in the space from the upstream of the river to its exit into the foothills. The developed method can be applied for quantitative morphometric classification of the mountain rivers’ valleys in other regions.


2016 ◽  
Author(s):  
Celine Martin ◽  
◽  
George E. Harlow ◽  
George E. Harlow ◽  
George E. Harlow ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
J. Alexis P. Rodriguez ◽  
Kenneth L. Tanaka ◽  
Ali M. Bramson ◽  
Gregory J. Leonard ◽  
Victor R. Baker ◽  
...  

AbstractThe clockwise spiral of troughs marking the Martian north polar plateau forms one of the planet’s youngest megastructures. One popular hypothesis posits that the spiral pattern resulted as troughs underwent poleward migration. Here, we show that the troughs are extensively segmented into enclosed depressions (or cells). Many cell interiors display concentric layers that connect pole- and equator-facing slopes, demonstrating in-situ trough erosion. The segmentation patterns indicate a history of gradual trough growth transversely to katabatic wind directions, whereby increases in trough intersections generated their spiral arrangement. The erosional event recorded in the truncated strata and trough segmentation may have supplied up to ~25% of the volume of the mid-latitude icy mantles. Topographically subtle undulations transition into troughs and have distributions that mimic and extend the troughs’ spiraling pattern, indicating that they probably represent buried trough sections. The retention of the spiral pattern in surface and subsurface troughs is consistent with the megastructure’s stabilization before its partial burial. A previously suggested warm paleoclimatic spike indicates that the erosion could have occurred as recently as ~50 Ka. Hence, if the removed ice was redeposited to form the mid-latitude mantles, they could provide a valuable source of near-surface, clean ice for future human exploration.


Sign in / Sign up

Export Citation Format

Share Document