scholarly journals Optical, physical and chemical characteristics of Australian continental aerosols: results from a field experiment

2010 ◽  
Vol 10 (13) ◽  
pp. 5925-5942 ◽  
Author(s):  
M. Radhi ◽  
M. A. Box ◽  
G. P. Box ◽  
R. M. Mitchell ◽  
D. D. Cohen ◽  
...  

Abstract. Mineral dust is one of the major components of the world's aerosol mix, having a number of impacts within the Earth system. However, the climate forcing impact of mineral dust is currently poorly constrained, with even its sign uncertain. As Australian deserts are more reddish than those in the Northern Hemisphere, it is important to better understand the physical, chemical and optical properties of this important aerosol. We have investigated the properties of Australian desert dust at a site in SW Queensland, which is strongly influenced by both dust and biomass burning aerosol. Three years of ground-based monitoring of spectral optical thickness has provided a statistical picture of gross aerosol properties. The aerosol optical depth data showed a clear though moderate seasonal cycle with an annual mean of 0.06 ± 0.03. The Angstrom coefficient showed a stronger cycle, indicating the influence of the winter-spring burning season in Australia's north. AERONET size distributions showed a generally bimodal character, with the coarse mode assumed to be mineral dust, and the fine mode a mixture of fine dust, biomass burning and marine biogenic material. In November 2006 we undertook a field campaign which collected 4 sets of size-resolved aerosol samples for laboratory analysis – ion beam analysis and ion chromatography. Ion beam analysis was used to determine the elemental composition of all filter samples, although elemental ratios were considered the most reliable output. Scatter plots showed that Fe, Al and Ti were well correlated with Si, and Co reasonably well correlated with Si, with the Fe/Al ratio somewhat higher than values reported from Northern Hemisphere sites (as expected). Scatter plots for Ca, Mn and K against Si showed clear evidence of a second population, which in some cases could be identified with a particular sample day or size fraction. These data may be used to attempt to build a signature of soil in this region of the Australian interior. Ion chromatography was used to quantify water soluble ions for 2 of our sample sets, complementing the picture provided by ion beam analysis. The strong similarities between the MSA and SO42− size distributions argue strongly for a marine origin of much of the SO42−. The similarity of the Na+, Cl− and Mg2+ size distributions also argue for a marine contribution. Further, we believe that both NO3− and NH4+ are the result of surface reactions with appropriate gases.

2009 ◽  
Vol 9 (6) ◽  
pp. 25085-25125 ◽  
Author(s):  
M. Radhi ◽  
M. A. Box ◽  
G. P. Box ◽  
R. M. Mitchell ◽  
D. D. Cohen ◽  
...  

Abstract. Mineral dust is one of the major components of the world's aerosol mix, having a number of impacts within the Earth system. However, the climate forcing impact of mineral dust is currently poorly constrained, with even its sign uncertain. As Australian deserts are more reddish than those in the northern hemisphere, it is important to better understand the physical, chemical and optical properties of this important aerosol. We have investigated the properties of Australian desert dust at a site in SW Queensland, which is strongly influenced by both dust and biomass burning aerosol. Three years of ground-based monitoring of spectral optical thickness has provided a statistical picture of gross aerosol properties. In November 2006 we undertook a field campaign which collected 4 sets of size-resolved aerosol samples for laboratory analysis – both ion beam analysis and ion chromatography. The aerosol optical depth data showed a weak seasonal cycle with an annual mean of 0.06±0.03. The Angstrom coefficient showed a stronger cycle, indicating the influence of the winter-spring burning season in Australia's north. Size distribution inversions showed a bimodal character, with the coarse mode assumed to be mineral dust, and the fine mode a mixture of biomass burning and marine biogenic material. Ion Beam Analysis was used to determine the elemental composition of all filter samples, although elemental ratios were considered the most reliable output. Scatter plots showed that Fe, Al and Ti were well correlated with Si, and Co reasonably well correlated, with the Fe/Si ratio higher than the crustal average, as expected. Scatter plots for Ca, Mn and K against Si showed clear evidence of a second population, which in some cases could be identified with a particular sample day or size fraction. Ion Chromatography was used to quantify water soluble ions for 2 of our sample sets, showing the importance of marine influences on both fine (biogenic) and coarse (sea salt) modes.


2019 ◽  
Vol 297 ◽  
pp. 100-110 ◽  
Author(s):  
Nick Lucas ◽  
Kelsey E. Seyfang ◽  
Andrew Plummer ◽  
Michael Cook ◽  
K. Paul Kirkbride ◽  
...  

Instruments ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 10
Author(s):  
Sören Möller ◽  
Daniel Höschen ◽  
Sina Kurth ◽  
Gerwin Esser ◽  
Albert Hiller ◽  
...  

The analysis of material composition by ion-beam analysis (IBA) is becoming a standard method, similar to electron microscopy. A pool of IBA methods exists, from which the combination of particle-induced-X-ray emission (PIXE), particle induced gamma-ray analysis (PIGE), nuclear-reaction-analysis (NRA), and Rutherford-backscattering-spectrometry (RBS) provides the most complete analysis over the whole periodic table in a single measurement. Yet, for a highly resolved and accurate IBA analysis, a sophisticated technical setup is required integrating the detectors, beam optics, and sample arrangement. A new end-station developed and installed in Forschungszentrum Jülich provides these capabilities in combination with high sample throughput and result accuracy. Mechanical tolerances limit the device accuracy to 3% for RBS. Continuous pumping enables 5*10−8 mbar base pressure with vibration amplitudes < 0.1 µm. The beam optics achieves a demagnification of 24–34, suitable for µ-beam analysis. An in-vacuum manipulator enables scanning 50 × 50 mm² sample areas with 10 nm accuracy. The setup features the above-mentioned IBA detectors, enabling a broad range of analysis applications such as the operando analysis of batteries or the post-mortem analysis of plasma-exposed samples with up to 3000 discrete points per day. Custom apertures and energy resolutions down to 11 keV enable separation of Fe and Cr in RBS. This work presents the technical solutions together with the quantification of these challenges and their success in the form of a technical reference.


Author(s):  
P. Wei ◽  
M. Chicoine ◽  
S. Gujrathi ◽  
F. Schiettekatte ◽  
J.-N. Beaudry ◽  
...  

1999 ◽  
Vol 12 (3) ◽  
pp. 457-467 ◽  
Author(s):  
Narayan Sundararajan ◽  
Christopher F. Keimel ◽  
Navin Bhargava ◽  
Christopher K. Ober ◽  
Juliann Opitz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document