scholarly journals The effects of atmospheric waves on the amounts of polar stratospheric clouds

2011 ◽  
Vol 11 (22) ◽  
pp. 11535-11552 ◽  
Author(s):  
M. Kohma ◽  
K. Sato

Abstract. A quantitative analysis on the relationship between atmospheric waves and polar stratospheric clouds (PSCs) in the 2008 austral winter and the 2007/2008 boreal winter is made using CALIPSO, COSMIC and Aura MLS observation data and reanalysis data. A longitude-time section of the frequency of PSC occurrence in the Southern Hemisphere indicates that PSC frequency is not regionally uniform and that high PSC frequency regions propagate eastward at different speeds from the background zonal wind. These features suggest a significant influence of atmospheric waves on PSC behavior. Next, three temperature thresholds for PSC existence are calculated using HNO3 and H2O mixing ratios. Among the three, the TSTS (a threshold for super cooled ternary solution)-based estimates of PSC frequency accord best with the observations in terms of the amount, spatial and temporal variation, in particular, for the latitude ranges of 55° S–70° S and 55° N–85° N. Moreover, the effects of planetary waves, synoptic-scale waves and gravity waves on PSC areal extent are separately examined using the TSTS-based PSC estimates. The latitude range of 55° S–70° S is analyzed because the TSTS-based estimates are not consistent with observations at higher latitudes (<75° S) above 18 km, and PSCs in lower latitudes are more important to the ozone depletion because of the earlier arrival of solar radiation in spring. It is shown that nearly 100% of PSCs between 55° S and 70° S at altitudes of 16–24 km are formed by temperature modulation, which is influenced by planetary waves during winter. Although the effects of synoptic-scale waves on PSCs are limited, around an altitude of 12 km more than 60% of the total PSC areal extent is formed by synoptic-scale waves. The effects of gravity waves on PSC areal extent are not large in the latitude range of 55° S–70° S. However, at higher latitudes, gravity waves act to increase PSC areal extent at an altitude of 15 km by about 30% in September. Similar analyses are performed for the Northern Hemisphere. It is shown that almost all PSCs observed in the Northern Hemisphere are attributable to low temperature anomalies associated with planetary waves.

2011 ◽  
Vol 11 (6) ◽  
pp. 16967-17012 ◽  
Author(s):  
M. Kohma ◽  
K. Sato

Abstract. A quantitative analysis on the relationship between atmospheric waves and polar stratospheric clouds (PSCs) in the 2008 austral winter and the 2007/2008 boreal winter is made using CALIPSO, COSMIC and Aura MLS observation data and reanalysis data. A longitude-time section of the frequency of PSC occurrence in the Southern Hemisphere indicates that PSC frequency is not regionally uniform and that high PSC frequency regions propagate eastward at different speeds from the background zonal wind. These features suggest a significant influence of atmospheric waves on PSC behavior. Next, three temperature thresholds for PSC existence are calculated using HNO3 and H2O mixing ratios. Among the three, the TSTS (a threshold for super cooled ternary solution)-based estimates of PSC frequency accord best with the observations in terms of the amount, spatial and temporal variation, in particular for the latitude range of 55° S–70° S in the Southern Hemisphere and for 55° N–85° N in the Northern Hemisphere. Moreover, the effects of planetary waves, synoptic-scale waves and gravity waves on PSC areal extent are separately examined using the TSTS-based PSC estimates. The latitude range of 55° S–70° S is analyzed because the TSTS-based estimates are not consistent with observations at higher latitudes (< 75° S) above 18 km, and PSCs in lower latitudes are more important to the ozone depletion because of the earlier arrival of solar radiation in spring. It is shown that nearly 100 % of PSCs between 55° S and 70° S at altitudes of 16–24 km are formed by temperature modulation, which is influenced by planetary waves during winter. Although the effects of synoptic-scale waves on PSCs are limited, around an altitude of 12 km more than 60 % of the total PSC areal extent is formed by synoptic-scale waves. The effects of gravity waves on PSC areal extent are not large in the latitude range of 55° S–70° S. However, at higher latitudes, gravity waves act to increase PSC areal extent at an altitude of 15 km by about 30 % in September. Similar analyses are performed for the Northern Hemisphere. It is shown that almost all PSCs observed in the Northern Hemisphere are attributable to low temperature anomalies associated with planetary waves.


2009 ◽  
Vol 9 (22) ◽  
pp. 8825-8840 ◽  
Author(s):  
A. J. McDonald ◽  
S. E. George ◽  
R. M. Woollands

Abstract. A combination of POAM III aerosol extinction and CHAMP RO temperature measurements are used to examine the role of atmospheric gravity waves in the formation of Antarctic Polar Stratospheric Clouds (PSCs). POAM III aerosol extinction observations and quality flag information are used to identify Polar Stratospheric Clouds using an unsupervised clustering algorithm. A PSC proxy, derived by thresholding Met Office temperature analyses with the PSC Type Ia formation temperature (TNAT), shows general agreement with the results of the POAM III analysis. However, in June the POAM III observations of PSC are more abundant than expected from temperature threshold crossings in five out of the eight years examined. In addition, September and October PSC identified using temperature thresholding is often significantly higher than that derived from POAM III; this observation probably being due to dehydration and denitrification. Comparison of the Met Office temperature analyses with corresponding CHAMP observations also suggests a small warm bias in the Met Office data in June. However, this bias cannot fully explain the differences observed. Analysis of CHAMP data indicates that temperature perturbations associated with gravity waves may partially explain the enhanced PSC incidence observed in June (relative to the Met Office analyses). For this month, approximately 40% of the temperature threshold crossings observed using CHAMP RO data are associated with small-scale perturbations. Examination of the distribution of temperatures relative to TNAT shows a large proportion of June data to be close to this threshold, potentially enhancing the importance of gravity wave induced temperature perturbations. Inspection of the longitudinal structure of PSC occurrence in June 2005 also shows that regions of enhancement are geographically associated with the Antarctic Peninsula; a known mountain wave "hotspot". The latitudinal variation of POAM III observations means that we only observe this region in June–July, and thus the true pattern of enhanced PSC production may continue operating into later months. The analysis has shown that early in the Antarctic winter stratospheric background temperatures are close to the TNAT threshold (and PSC formation), and are thus sensitive to temperature perturbations associated with mountain wave activity near the Antarctic peninsula (40% of PSC formation). Later in the season, and at latitudes away from the peninsula, temperature perturbations associated with gravity waves contribute to about 15% of the observed PSC (a value which corresponds well to several previous studies). This lower value is likely to be due to colder background temperatures already achieving the TNAT threshold unaided. Additionally, there is a reduction in the magnitude of gravity waves perturbations observed as POAM III samples poleward of the peninsula.


2006 ◽  
Vol 6 (6) ◽  
pp. 11391-11426 ◽  
Author(s):  
J. Alfred ◽  
M. Fromm ◽  
R. Bevilacqua ◽  
G. Nedoluha ◽  
A. Strawa ◽  
...  

Abstract. The Polar Ozone and Aerosol Measurement and Stratospheric Aerosol and Gas Experiment instruments both observed high numbers of polar stratospheric clouds (PSCs) in the polar region during the second SAGE Ozone Loss and Validation Experiment (SOLVE II) and Validation of INTERnational Satellites and Study of Ozone Loss (VINTERSOL) campaign, conducted during the 2002/2003 Northern Hemisphere winter. Between 15 November 2002 (14 November 2002) and 18 March 2003 (21 March 2003) SAGE (POAM) observed 122 (151) aerosol extinction profiles containing PSCs. PSCs were observed on an almost daily basis, from early December through 15 January, in both instruments. No PSCs were observed from either instrument until 4 February, and sparingly in three periods in mid-and-late February and mid-March. In early December, PSCs were observed in the potential temperature range from roughly 375 K to 750 K. Throughout December the top of this range decreases to near 600 K. In February and March, PSC observations were primarily constrained to potential temperatures below 500 K. The PSC observation frequency as a function of ambient temperature relative to the NAT saturation point was used to infer irreversible denitrification. By late December 38% denitrification was inferred at both the 400–475 K and 475–550 K potential temperature ranges. By early January extensive levels of denitrification near 80% were inferred at both potential temperature ranges, and the air remained denitrified at least through early March.


Sign in / Sign up

Export Citation Format

Share Document