scholarly journals Los Angeles megacity: a high-resolution land–atmosphere modelling system for urban CO<sub>2</sub> emissions

2016 ◽  
Vol 16 (14) ◽  
pp. 9019-9045 ◽  
Author(s):  
Sha Feng ◽  
Thomas Lauvaux ◽  
Sally Newman ◽  
Preeti Rao ◽  
Ravan Ahmadov ◽  
...  

Abstract. Megacities are major sources of anthropogenic fossil fuel CO2 (FFCO2) emissions. The spatial extents of these large urban systems cover areas of 10 000 km2 or more with complex topography and changing landscapes. We present a high-resolution land–atmosphere modelling system for urban CO2 emissions over the Los Angeles (LA) megacity area. The Weather Research and Forecasting (WRF)-Chem model was coupled to a very high-resolution FFCO2 emission product, Hestia-LA, to simulate atmospheric CO2 concentrations across the LA megacity at spatial resolutions as fine as  ∼  1 km. We evaluated multiple WRF configurations, selecting one that minimized errors in wind speed, wind direction, and boundary layer height as evaluated by its performance against meteorological data collected during the CalNex-LA campaign (May–June 2010). Our results show no significant difference between moderate-resolution (4 km) and high-resolution (1.3 km) simulations when evaluated against surface meteorological data, but the high-resolution configurations better resolved planetary boundary layer heights and vertical gradients in the horizontal mean winds. We coupled our WRF configuration with the Vulcan 2.2 (10 km resolution) and Hestia-LA (1.3 km resolution) fossil fuel CO2 emission products to evaluate the impact of the spatial resolution of the CO2 emission products and the meteorological transport model on the representation of spatiotemporal variability in simulated atmospheric CO2 concentrations. We find that high spatial resolution in the fossil fuel CO2 emissions is more important than in the atmospheric model to capture CO2 concentration variability across the LA megacity. Finally, we present a novel approach that employs simultaneous correlations of the simulated atmospheric CO2 fields to qualitatively evaluate the greenhouse gas measurement network over the LA megacity. Spatial correlations in the atmospheric CO2 fields reflect the coverage of individual measurement sites when a statistically significant number of sites observe emissions from a specific source or location. We conclude that elevated atmospheric CO2 concentrations over the LA megacity are composed of multiple fine-scale plumes rather than a single homogenous urban dome. Furthermore, we conclude that FFCO2 emissions monitoring in the LA megacity requires FFCO2 emissions modelling with  ∼  1 km resolution because coarser-resolution emissions modelling tends to overestimate the observational constraints on the emissions estimates.

2016 ◽  
Author(s):  
Sha Feng ◽  
Thomas Lauvaux ◽  
Sally Newman ◽  
Preeti Rao ◽  
Ravan Ahmadov ◽  
...  

Abstract. Megacities are major sources of anthropogenic fossil fuel CO2 emissions. The spatial extents of these large urban systems cover areas of 10,000 km2 or more with complex topography and changing landscapes. We present a high-resolution land-atmosphere modelling system for urban CO2 emissions over the Los Angeles (LA) megacity area. The Weather Research and Forecasting (WRF)-Chem model was coupled to a very high-resolution FFCO2 emission product, Hestia-LA, to simulate atmospheric CO2 concentrations across the LA megacity at spatial resolutions as fine as ~ 1 km. We evaluated multiple WRF configurations, selecting one that minimized errors in wind speed, wind direction, and boundary layer height as validated by its performance against meteorological data collected during the CalNex-LA campaign (May–June 2010). Our results show no significant difference between moderate- (4-km) and high- (1.3-km) resolution simulations when evaluated against surface meteorological data, but the high-resolution configurations better resolved PBL heights and vertical gradients in the horizontal mean winds. We coupled our WRF configuration with the Vulcan 2.2 (10 km resolution) and Hestia-LA (1.3-km resolution) fossil fuel CO2 emission products to evaluate the impact of the spatial resolution of the CO2 emission products and the meteorological transport model on the representation of spatiotemporal variability in simulated atmospheric CO2 concentrations. We find that high spatial resolution in the fossil fuel CO2 emissions is more important than in the atmospheric model to capture CO2 concentration variability across the LA megacity. Finally, we present a novel approach that employs simultaneous correlations of the simulated atmospheric CO2 fields to qualitatively evaluate greenhouse gas measurements over the LA megacity. Spatial correlations in the atmospheric CO2 fields reflect the coverage of individual measurement sites when a statistically significant number of sites observe emissions from a specific source or location. We conclude that elevated atmospheric CO2 concentrations over the LA megacity are composed of multiple fine-scale plumes rather than a single homogenous urban dome. Furthermore, we conclude that FFCO2 emissions monitoring in the LA megacity requires FFCO2 emissions modelling with ~ 1 km resolution since coarser resolution emissions modelling tends to overestimate the observational constraints on the emissions estimates.


2011 ◽  
Vol 4 (3) ◽  
pp. 2047-2080 ◽  
Author(s):  
A. Ganshin ◽  
T. Oda ◽  
M. Saito ◽  
S. Maksyutov ◽  
V. Valsala ◽  
...  

Abstract. We designed a method to simulate atmospheric CO2 concentrations at several continuous observation sites around the globe using surface fluxes at a very high spatial resolution. The simulations presented in this study were performed using a Lagrangian particle dispersion model coupled to a global atmospheric tracer transport model with prescribed global surface CO2 flux maps at a 1 × 1 km resolution. The surface fluxes used in the simulations were prepared by assembling the individual components of terrestrial, oceanic and fossil fuel CO2 fluxes. This experimental setup (i.e., a transport model running at a medium resolution, coupled to a high-resolution Lagrangian particle dispersion model together with global surface fluxes at a very high resolution), which was designed to represent high-frequency variations in atmospheric CO2 concentration, has not been reported at a global scale previously. Two sensitivity experiments were performed: (a) using the global transport model without coupling to the Lagrangian dispersion model, and (b) using the coupled model with a reduced resolution of surface fluxes, in order to evaluate the performance of Eulerian-Lagrangian coupling and the role of high-resolution fluxes in simulating high-frequency variations in atmospheric CO2 concentrations. A correlation analysis between observed and simulated atmospheric CO2 concentrations at selected locations revealed that the inclusion of both Eulerian-Lagrangian coupling and high-resolution fluxes improves the high-frequency simulations of the model. The results highlight the potential of a coupled Eulerian-Lagrangian model in simulating high-frequency atmospheric CO2 concentrations at many locations worldwide. The model performs well in representing observations of atmospheric CO2 concentrations at high spatial and temporal resolutions, especially for coastal sites and sites located close to sources of large anthropogenic emissions. While this study focused on simulations of CO2 concentrations, the model could be used for other atmospheric compounds with known estimated emissions.


2012 ◽  
Vol 5 (1) ◽  
pp. 231-243 ◽  
Author(s):  
A. Ganshin ◽  
T. Oda ◽  
M. Saito ◽  
S. Maksyutov ◽  
V. Valsala ◽  
...  

Abstract. We designed a method to simulate atmospheric CO2 concentrations at several continuous observation sites around the globe using surface fluxes at a very high spatial resolution. The simulations presented in this study were performed using the Global Eulerian-Lagrangian Coupled Atmospheric model (GELCA), comprising a Lagrangian particle dispersion model coupled to a global atmospheric tracer transport model with prescribed global surface CO2 flux maps at a 1 × 1 km resolution. The surface fluxes used in the simulations were prepared by assembling the individual components of terrestrial, oceanic and fossil fuel CO2 fluxes. This experimental setup (i.e. a transport model running at a medium resolution, coupled to a high-resolution Lagrangian particle dispersion model together with global surface fluxes at a very high resolution), which was designed to represent high-frequency variations in atmospheric CO2 concentration, has not been reported at a global scale previously. Two sensitivity experiments were performed: (a) using the global transport model without coupling to the Lagrangian dispersion model, and (b) using the coupled model with a reduced resolution of surface fluxes, in order to evaluate the performance of Eulerian-Lagrangian coupling and the role of high-resolution fluxes in simulating high-frequency variations in atmospheric CO2 concentrations. A correlation analysis between observed and simulated atmospheric CO2 concentrations at selected locations revealed that the inclusion of both Eulerian-Lagrangian coupling and high-resolution fluxes improves the high-frequency simulations of the model. The results highlight the potential of a coupled Eulerian-Lagrangian model in simulating high-frequency atmospheric CO2 concentrations at many locations worldwide. The model performs well in representing observations of atmospheric CO2 concentrations at high spatial and temporal resolutions, especially for coastal sites and sites located close to sources of large anthropogenic emissions. While this study focused on simulations of CO2 concentrations, the model could be used for other atmospheric compounds with known estimated emissions.


2018 ◽  
Vol 242 ◽  
pp. 53-61 ◽  
Author(s):  
Romina Beleggia ◽  
Mariagiovanna Fragasso ◽  
Franco Miglietta ◽  
Luigi Cattivelli ◽  
Valeria Menga ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document