scholarly journals Kinetic modeling studies of SOA formation from <i>α</i>-pinene ozonolysis

2017 ◽  
Vol 17 (21) ◽  
pp. 13187-13211 ◽  
Author(s):  
Kathrin Gatzsche ◽  
Yoshiteru Iinuma ◽  
Andreas Tilgner ◽  
Anke Mutzel ◽  
Torsten Berndt ◽  
...  

Abstract. This paper describes the implementation of a kinetic gas-particle partitioning approach used for the simulation of secondary organic aerosol (SOA) formation within the SPectral Aerosol Cloud Chemistry Interaction Model (SPACCIM). The kinetic partitioning considers the diffusion of organic compounds into aerosol particles and the subsequent chemical reactions in the particle phase. The basic kinetic partitioning approach is modified by the implementation of chemical backward reaction of the solute within the particle phase as well as a composition-dependent particle-phase bulk diffusion coefficient. The adapted gas-phase chemistry mechanism for α-pinene oxidation has been updated due to the recent findings related to the formation of highly oxidized multifunctional organic compounds (HOMs). Experimental results from a LEAK (Leipziger Aerosolkammer) chamber study for α-pinene ozonolysis were compared with the model results describing this reaction system.The performed model studies reveal that the particle-phase bulk diffusion coefficient and the particle-phase reactivity are key parameters for SOA formation. Using the same particle-phase reactivity for both cases, we find that liquid particles with higher particle-phase bulk diffusion coefficients have 310 times more organic material formed in the particle phase compared to higher viscous semi-solid particles with lower particle-phase bulk diffusion coefficients. The model results demonstrate that, even with a moderate particle-phase reactivity, about 61 % of the modeled organic mass consists of reaction products that are formed in the liquid particles. This finding emphasizes the potential role of SOA processing. Moreover, the initial organic aerosol mass concentration and the particle radius are of minor importance for the process of SOA formation in liquid particles. A sensitivity study shows that a 22-fold increase in particle size merely leads to a SOA increase of less than 10 %.Due to two additional implementations, allowing backward reactions in the particle phase and considering a composition-dependent particle-phase bulk diffusion coefficient, the potential overprediction of the SOA mass with the basic kinetic approach is reduced by about 40 %. HOMs are an important compound group in the early stage of SOA formation because they contribute up to 65 % of the total SOA mass at this stage. HOMs also induce further SOA formation by providing an absorptive medium for SVOCs (semi-volatile organic compounds). This process contributes about 27 % of the total organic mass. The model results are very similar to the LEAK chamber results. Overall, the sensitivity studies demonstrate that the particle reactivity and the particle-phase bulk diffusion require a better characterization in order to improve the current model implementations and to validate the assumptions made from the chamber simulations. The successful implementation and testing of the current kinetic gas-particle partitioning approach in a box model framework will allow further applications in a 3-D model for regional-scale process investigations.

2017 ◽  
Author(s):  
Kathrin Gatzsche ◽  
Yoshiteru Iinuma ◽  
Andreas Tilgner ◽  
Anke Mutzel ◽  
Torsten Berndt ◽  
...  

Abstract. This paper describes the implementation of a kinetic gas-particle partitioning approach used for the simulation of secondary organic aerosol (SOA) formation within the SPectral Aerosol Cloud Chemistry Interaction Model (SPACCIM). The kinetic partitioning considers the diffusion of organic compounds into aerosol particles and the subsequent chemical reactions in the particle phase. The basic kinetic partitioning approach is modified by the implementation of chemical backward reaction of the solute within the particle phase as well as a composition dependent particle-phase bulk diffusion coefficient. The adapted gas-phase chemistry mechanism for α-pinene oxidation has been updated due to the recent findings related to the formation of highly oxidized multifunctional organic compounds (HOMs). Experimental results from a LEAK (Leipziger Aerosolkammer) chamber study for α-pinene ozonolysis were compared with the model results describing this reaction system. The performed model studies reveal that the particle-phase bulk diffusion coefficient and the particle phase reactivity are key parameters for SOA formation. Using the same particle phase reactivity for both cases we find that liquid particles with higher particle-phase bulk diffusion coefficients have 310-times more organic material formed in the particle phase compared to higher viscous semi-solid particles with lower particle-phase bulk diffusion coefficients. The model results demonstrate that, even with a moderate particle phase reactivity, about 61 % of the modeled organic mass consists of reaction products that are formed in the liquid particles. This finding emphasizes the potential role of SOA processing. Moreover, the initial organic aerosol mass concentration and the particle radius are of minor importance for the process of SOA formation in liquid particles. A sensitivity study shows that a 22-fold increase in particle size merely leads to a SOA increase of less than 10 %. Due to two additional implementations, allowing backward reactions in the particle phase and considering a composition dependent particle-phase bulk diffusion coefficient, the potential overprediction of the SOA mass with the basic kinetic approach is reduced by about 40 %. HOMs are an important compound group in the early stage of SOA formation because they contribute up to 65 % of the total SOA mass at this stage. HOMs also induce further SOA formation by providing an absorptive medium for SVOCs (semi-volatile organic compounds). This process contributes about 27 % of the total organic mass. The model results are very similar to the LEAK chamber results. Overall, the sensitivity studies demonstrate that the particle reactivity and the particle-phase bulk diffusion require a better characterization in order to improve the current model implementations and to validate the assumptions made from the chamber simulations. The successful implementation and testing of the current kinetic gas-particle partitioning approach in a box model framework will allow further applications in a 3D model for regional scale process investigations.


2016 ◽  
Vol 16 (8) ◽  
pp. 5299-5313 ◽  
Author(s):  
Simon O'Meara ◽  
David O. Topping ◽  
Gordon McFiggans

Abstract. The proximity of atmospheric aerosol particles to equilibrium with their surrounding condensable vapours can substantially impact their transformations, fate and impacts and is the subject of vibrant research activity. In this study we first compare equilibration timescales estimated by three different models for diffusion through aerosol particles to assess any sensitivity to choice of model framework. Equilibration times for diffusion coefficients with varying dependencies on composition are compared for the first time. We show that even under large changes in the saturation ratio of a semi-volatile component (es) of 1–90 % predicted equilibration timescales are in agreement, including when diffusion coefficients vary with composition. For condensing water and a diffusion coefficient dependent on composition, a plasticising effect is observed, leading to a decreased estimated equilibration time with increasing final es. Above 60 % final es maximum equilibration times of around 1 s are estimated for comparatively large particles (10 µm) containing a relatively low diffusivity component (1  ×  10−25 m2 s−1 in pure form). This, as well as other results here, questions whether particle-phase diffusion through water-soluble particles can limit hygroscopic growth in the ambient atmosphere. In the second part of this study, we explore sensitivities associated with the use of particle radius measurements to infer diffusion coefficient dependencies on composition using a diffusion model. Given quantified similarities between models used in this study, our results confirm considerations that must be taken into account when designing such experiments. Although quantitative agreement of equilibration timescales between models is found, further work is necessary to determine their suitability for assessing atmospheric impacts, such as their inclusion in polydisperse aerosol simulations.


2015 ◽  
Vol 15 (14) ◽  
pp. 7765-7776 ◽  
Author(s):  
F. D. Lopez-Hilfiker ◽  
C. Mohr ◽  
M. Ehn ◽  
F. Rubach ◽  
E. Kleist ◽  
...  

Abstract. We measured a large suite of gas- and particle-phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gas and particle phases, the latter being detected by temperature-programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO–HR-ToF-CIMS are highly correlated with, and explain at least 25–50 % of, the organic aerosol mass measured by an Aerodyne aerosol mass spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from high molecular weight organics and/or oligomers (i.e., multi-phase accretion reaction products). Approximately 50 % of the HR-ToF-CIMS particle-phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption-temperature-based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas-particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the conversion of lower volatility components into the detected higher volatility compounds.


2021 ◽  
Author(s):  
Magdalena Vallon ◽  
Linyu Gao ◽  
Junwei Song ◽  
Feng Jiang ◽  
Harald Saathoff

&lt;p&gt;The chemical composition of aerosols, in both gas and particle phase, is an important factor regarding their properties influencing air quality, weather, climate, and human health. Organic compounds are a major fraction of atmospheric aerosols and their composition depends on chemical processing by atmospheric oxidants and photochemical reactions. These processes are complex due to the abundance of potential reactions and rarely studied over a wider range of atmospheric temperatures. To achieve a better understanding of three different photochemical processes relevant for the atmosphere as well as the capabilities to investigate such processes in our simulation chamber we studied three different organic aerosol systems between 213 K and 293 K in the AIDA simulation chamber at the Karlsruhe Institute of Technology.&amp;#160; With the first system we studied the direct photolysis of 2,3-pentanedion which is a typical carbonyl compound emitted by the food industry but also by trees. In the second system we studied the depletion of pinic and pinonic acid by radicals formed through photolysis of an iron oxalate complex, which acts as the photosensitizer in this system, all present in aqueous aerosol particles. Furthermore, we studied the photolysis of a nitrogen heterocycle in aerosol particles, which can form in the atmosphere by the reaction of dicarbonyls and shows strong absorption in the visible [1].&lt;/p&gt;&lt;p&gt;Photochemical reactions were studied using a new LED light-source simulating solar radiation in the UV and visible. The organic aerosols were generated by nebulizing aqueous solutions containing the aerosol components. &amp;#160;The aerosols were analysed by a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), a proton transfer mass spectrometer (CHARON-PTRMS) and a high&amp;#8211;resolution time-of-flight chemical ionization mass spectrometer (FIGAERO-HR-ToF-CIMS). &amp;#160;The latter two allow to study the composition of gas phase and particle phase separately.&lt;/p&gt;&lt;p&gt;In this presentation, we will discuss the changes that these organic compounds undergo in gas and particle phase, during photochemical aging at temperatures between 213 and 293 K.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;[1] C. J. Kampf, A. Filippi, C. Zuth, T. Hoffmann and T. Opatz, Secondary brown carbon formation via the dicarbonyl imine pathway: nitrogen heterocycle formation and synergistic effects, Phys. Chem. Chem. Phys, 2016, 18, 18353&lt;/p&gt;


2018 ◽  
Vol 18 (20) ◽  
pp. 14757-14785 ◽  
Author(s):  
Siegfried Schobesberger ◽  
Emma L. D'Ambro ◽  
Felipe D. Lopez-Hilfiker ◽  
Claudia Mohr ◽  
Joel A. Thornton

Abstract. Chemical ionization mass spectrometer (CIMS) techniques have been developed that allow for quantitative and composition-resolved measurements of organic compounds as they desorb from secondary organic aerosol (SOA) particles, in particular during their heat-induced evaporation. One such technique employs the Filter Inlet for Gases and AEROsol (FIGAERO). Here, we present a newly developed model framework with the main aim of reproducing FIGAERO-CIMS thermograms: signal vs. ramped desorption temperature. The model simulates the desorption of organic compounds during controlled heating of filter-sampled SOA particles, plus the subsequent transport of these compounds through the FIGAERO manifold into an iodide-CIMS. Desorption is described by a modified Hertz–Knudsen equation and controlled chiefly by the temperature-dependent saturation concentration C*, mass accommodation (evaporation) coefficient, and particle surface area. Subsequent transport is governed by interactions with filter and manifold surfaces. Reversible accretion reactions (oligomer formation and decomposition) and thermal decomposition are formally described following the Arrhenius relation. We use calibration experiments to tune instrument-specific parameters and then apply the model to a test case: measurements of SOA generated from dark ozonolysis of α-pinene. We then discuss the ability of the model to describe thermograms from simple calibration experiments and from complex SOA, and the associated implications for the chemical and physical properties of the SOA. For major individual compositions observed in our SOA test case (#C=8 to 10), the thermogram peaks can typically be described by assigning C25∘C* values in the range 0.05 to 5 µg m−3, leaving the larger, high-temperature fractions (>50 %) of the thermograms to be described by thermal decomposition, with dissociation rates on the order of ∼1 h−1 at 25 ∘C. We conclude with specific experimental designs to better constrain instrumental model parameters and to aid in resolving remaining ambiguities in the interpretation of more complex SOA thermogram behaviors. The model allows retrieval of quantitative volatility and mass transport information from FIGAERO thermograms, and for examining the effects of various environmental or chemical conditions on such properties.


2016 ◽  
Author(s):  
S. O'Meara ◽  
D.O Topping ◽  
G. McFiggans

Abstract. The proximity of atmospheric aerosol particles to equilibrium with their surrounding condensable vapours can substantially impact their transformations, fate and impacts and is the subject of vibrant research activity. In this study we first compare equilibration timescales estimated by three different models for diffusion through aerosol particles to assess any sensitivity to choice of model framework. Equilibration times for diffusion coefficients with varying dependencies on composition are compared for the first time. We show that even under large changes in the saturation ratio of a semi-volatile component (es) of 1-90% predicted equilibration timescales are in agreement, including when diffusion coefficients vary with composition. For condensing water and a diffusion coefficient dependent on composition, a plasticising effect is observed, leading to a decreased estimated equilibration time with increasing final es. Above 60% final es maximum equilibration times of around 1 s are estimated for comparatively large particles (10 µm) containing a relatively low diffusivity component (1x1025 m2s−1 in pure form). This, as well as other results here, questions whether particle-phase diffusion can be a limiting factor in gas-particle mass transfer in the ambient atmosphere, at least for water-soluble particles. In the second part of this study, we explore sensitivities associated with the use of particle radius measurements to infer diffusion coefficient dependencies on composition using a diffusion model. Given quantified similarities between models used in this study, our results confirm considerations that must be taken into account when designing such experiments. Although quantitative agreement of equilibration timescales between models is found, further work is necessary to determine their suitability for assessing atmospheric impacts, such as their inclusion in polydisperse aerosol simulations.


2018 ◽  
Author(s):  
Siegfried Schobesberger ◽  
Emma L. D'Ambro ◽  
Felipe D. Lopez-Hilfiker ◽  
Claudia Mohr ◽  
Joel A. Thornton

Abstract. Chemical ionization mass spectrometer (CIMS) techniques have been developed that allow for quantitative and composition-resolved measurements of organic compounds as they desorb from secondary organic aerosol (SOA) particles, in particular during their heat-induced evaporation. One such technique employs the Filter Inlet for Gases and AEROsol (FIGAERO). Here, we present a newly-developed model framework with the main aim of reproducing FIGAERO-CIMS thermograms: signal vs. ramped desorption temperature. The model simulates the desorption of organic compounds during controlled heating of filter-sampled SOA particles, plus the subsequent transport of these compounds through the FIGAERO manifold into an iodide-CIMS. Desorption is described by a modified Hertz-Knudsen equation and controlled chiefly by the temperature-dependent saturation concentration C*, mass accommodation (evaporation) coefficient, and particle surface area. Subsequent transport is governed by interactions with filter and manifold surfaces. Reversible accretion reactions (oligomer formation and decomposition) and thermal decomposition are formally described following the Arrhenius relation. We use calibration experiments for tuning instrument-specific parameters, and then apply the model to a test case: measurements of SOA generated from dark ozonolysis of α-pinene. We then discuss the ability of the model to describe thermograms from simple calibration experiments and from complex SOA, and the associated implications for the chemical and physical properties of the SOA. We conclude with specific experimental designs to better constrain instrumental model parameters and to aid in resolving remaining ambiguities in the interpretation of more complex SOA thermogram behaviors. The model allows retrieval of quantitative volatility and mass transport information from FIGAERO thermograms, and for examining the effects of various environmental or chemical conditions on such properties.


2015 ◽  
Vol 15 (4) ◽  
pp. 4463-4494 ◽  
Author(s):  
F. D. Lopez-Hilfiker ◽  
C. Mohr ◽  
M. Ehn ◽  
F. Rubach ◽  
E. Kleist ◽  
...  

Abstract. We measured a large suite of gas and particle phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gas and particle phases, the latter being detected upon temperature programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO HR-ToF-CIMS are highly correlated with, and explain at least 25–50% of, the organic aerosol mass measured by an Aerodyne Aerosol Mass Spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from large molecular weight organics and/or oligomers (i.e. multi-phase accretion reaction products). Approximately 50% of the HR-ToF-CIMS particle phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption temperature based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas–particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the conversion of lower volatility components into the detected higher volatility compounds.


2021 ◽  
Vol 21 (11) ◽  
pp. 8455-8478
Author(s):  
Chenshuo Ye ◽  
Bin Yuan ◽  
Yi Lin ◽  
Zelong Wang ◽  
Weiwei Hu ◽  
...  

Abstract. The atmospheric processes under polluted environments involving interactions of anthropogenic pollutants and natural emissions lead to the formation of various and complex secondary products. Therefore, the characterization of oxygenated organic compounds in urban areas remains a pivotal issue in our understanding of the evolution of organic carbon. Here, we describe measurements of an iodide chemical ionization time-of-flight mass spectrometer installed with a Filter Inlet for Gases and AEROsols (FIGAERO-I-CIMS) in both the gas phase and the particle phase at an urban site in Guangzhou, a typical megacity in southern China, during the autumn of 2018. Abundant oxygenated organic compounds containing two to five oxygen atoms were observed, including organic acids, multi-functional organic compounds typically emitted from biomass burning, oxidation products of biogenic hydrocarbons and aromatics. Photochemistry played dominant roles in the formation of gaseous organic acids and isoprene-derived organic nitrates, while nighttime chemistry contributed significantly to the formation of monoterpene-derived organic nitrates and inorganics. Nitrogen-containing organic compounds occupied a significant fraction of the total signal in both the gas and particle phases, with elevated fractions at higher molecular weights. Measurements of organic compounds in the particle phase by FIGAERO-I-CIMS explained 24 ± 0.8 % of the total organic aerosol mass measured by aerosol mass spectrometer (AMS), and the fraction increased for more aged organic aerosol. The systematical interpretation of mass spectra of the FIGAERO-I-CIMS in the urban area of Guangzhou provides a holistic view of numerous oxygenated organic compounds in the urban atmosphere, which can serve as a reference for the future field measurements by FIGAERO-I-CIMS in polluted urban regions.


2012 ◽  
Vol 12 (1) ◽  
pp. 3295-3356 ◽  
Author(s):  
C. D. Cappa ◽  
K. R. Wilson

Abstract. A new statistical model of secondary organic aerosol (SOA) formation is developed that explicitly takes into account multi-generational oxidation as well as fragmentation of gas-phase compounds. The model framework requires three tunable parameters to describe the kinetic evolution of SOA mass, the average oxygen-to-carbon atomic ratio and the mean particle volatility as oxidation proceeds. These parameters describe (1) the relationship between oxygen content and volatility, (2) the probability of fragmentation and (3) the amount of oxygen added per reaction. The time-evolution and absolute value of the SOA mass depends sensitively on all three tunable parameters. Of the tunable parameters, the mean O:C is most sensitive to the oxygen/volatility relationship, exhibiting only a weak dependence on the other two. The mean particle O:C produced from a given compound is primarily controlled by the number of carbon atoms comprising the SOA precursor. It is found that gas-phase compounds with larger than 11 carbon atoms are unlikely to form SOA with O:C values >0.4, which suggests that so-called "intermediate-volatility" organic compounds (IVOCs) and "semi-volatile" organic compounds (SVOCs) are not major contributors to the ambient SOA burden when high O:C ratios are observed, especially at short atmospheric times. The model is tested against laboratory measurements of SOA formation from the photooxidation of α-pinene and n-pentadecane and performs well (after tuning). This model may provide a generalized framework for the interpretation of laboratory SOA formation experiments in which explicit consideration of multiple-generations of products is required, which is true for all photo-oxidation experiments.


Sign in / Sign up

Export Citation Format

Share Document