scholarly journals Chemical characterization of oxygenated organic compounds in the gas phase and particle phase using iodide CIMS with FIGAERO in urban air

2021 ◽  
Vol 21 (11) ◽  
pp. 8455-8478
Author(s):  
Chenshuo Ye ◽  
Bin Yuan ◽  
Yi Lin ◽  
Zelong Wang ◽  
Weiwei Hu ◽  
...  

Abstract. The atmospheric processes under polluted environments involving interactions of anthropogenic pollutants and natural emissions lead to the formation of various and complex secondary products. Therefore, the characterization of oxygenated organic compounds in urban areas remains a pivotal issue in our understanding of the evolution of organic carbon. Here, we describe measurements of an iodide chemical ionization time-of-flight mass spectrometer installed with a Filter Inlet for Gases and AEROsols (FIGAERO-I-CIMS) in both the gas phase and the particle phase at an urban site in Guangzhou, a typical megacity in southern China, during the autumn of 2018. Abundant oxygenated organic compounds containing two to five oxygen atoms were observed, including organic acids, multi-functional organic compounds typically emitted from biomass burning, oxidation products of biogenic hydrocarbons and aromatics. Photochemistry played dominant roles in the formation of gaseous organic acids and isoprene-derived organic nitrates, while nighttime chemistry contributed significantly to the formation of monoterpene-derived organic nitrates and inorganics. Nitrogen-containing organic compounds occupied a significant fraction of the total signal in both the gas and particle phases, with elevated fractions at higher molecular weights. Measurements of organic compounds in the particle phase by FIGAERO-I-CIMS explained 24 ± 0.8 % of the total organic aerosol mass measured by aerosol mass spectrometer (AMS), and the fraction increased for more aged organic aerosol. The systematical interpretation of mass spectra of the FIGAERO-I-CIMS in the urban area of Guangzhou provides a holistic view of numerous oxygenated organic compounds in the urban atmosphere, which can serve as a reference for the future field measurements by FIGAERO-I-CIMS in polluted urban regions.

2020 ◽  
Author(s):  
Chenshuo Ye ◽  
Bin Yuan ◽  
Yi Lin ◽  
Zelong Wang ◽  
Weiwei Hu ◽  
...  

Abstract. The characterization of oxygenated organic compounds in urban areas remains a pivotal gap in our understanding of the evolution of organic carbon under polluted environments, as the atmospheric processes involving interactions between organics and inorganics, anthropogenic pollutants and natural emissions lead to formation of various and complex secondary products. Here, we describe measurements of an iodide chemical ionization time-of-flight mass spectrometer installed with a Filter Inlet for Gases and AEROsols (FIGAERO-I-CIMS) in both gas-phase and particle-phase at an urban site in Guangzhou, a typical mega-city in southern China, during the autumn of 2018. Abundant oxygenated organic compounds containing 2~5 oxygen atoms were observed, including organic acids, multi-functional organics typically emitted form biomass burning, oxidation products of biogenic hydrocarbons and aromatics. Photochemistry played dominant roles in the formation of gaseous organic acids and isoprene-derived organic nitrates, while nighttime chemistry contributed significantly to the formation monoterpene-derived organic nitrates and inorganics. Nitrogen-containing organic compounds occupied a significant fraction of the total signal in both gas and particle phases, with elevated fractions at higher molecular weights. Measurements of organic compounds in particle phase by FIGAERO-I-CIMS explained 24 % of the total organic aerosol mass measured by aerosol mass spectrometer (AMS), and the fraction increased for more aged organic aerosol. The systematically interpretation of mass spectra of the FIGAERO-I-CIMS in urban of Guangzhou provides a holistic view of numerous oxygenated organic compounds in the urban atmosphere, which can serve as a reference for the future field measurements by FIGAERO-I-CIMS in polluted urban regions.


2020 ◽  
Vol 20 (22) ◽  
pp. 14393-14405
Author(s):  
Liqing Hao ◽  
Eetu Kari ◽  
Ari Leskinen ◽  
Douglas R. Worsnop ◽  
Annele Virtanen

Abstract. Ammonia (NH3), a gaseous compound ubiquitously present in the atmosphere, is involved in the formation of secondary organic aerosol (SOA), but the exact mechanism is still not well known. This study presents the results of SOA experiments from the photooxidation of α-pinene in the presence of NH3 in the reaction chamber. SOA was formed in in nucleation experiments and in seeded experiments with ammonium sulfate particles as seeds. The chemical composition and time series of compounds in the gas and particle phase were characterized by an online high-resolution time-of-flight proton-transfer-reaction mass spectrometer (HR-ToF-PTRMS) and a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), respectively. Our results show that the mass concentration of ammonium (NH4+) was still rising even after the mass concentration of the organic component started to decrease due to aerosol wall deposition and evaporation, implying the continuous new formation of particle-phase ammonium in the process. Stoichiometric neutralization analysis of aerosol indicates that organic acids have a central role in the formation of particle-phase ammonium. Our measurements show a good correlation between the gas-phase organic mono- and dicarboxylic acids formed in the photooxidation of α-pinene and the ammonium in the particle phase, thus highlighting the contribution of gas-phase organic acids to the ammonium formation. The work shows that the gas-phase organic acids contribute to the SOA formation by forming organic ammonium salts through acid–base reaction. The changes in aerosol mass, particle size and chemical composition resulting from the NH3–SOA interaction can potentially alter the aerosol direct and indirect forcing and therefore alter its impact on climate change.


2020 ◽  
Author(s):  
Liqing Hao ◽  
Eetu Kari ◽  
Ari Leskinen ◽  
Douglas R. Worsnop ◽  
Annele Virtanen

Abstract. Ammonia (NH3), a gasous compound ubiquitiously present in the atmosphere, is involved in the formation of secondary organic aerosol (SOA), but the exact mechanisum is still not well known. This study presents the results of SOA experiments from the photooxidation of α-pinene in the presence of NH3 in the reaction chamber. SOA was formed in nucleation experiment and in seeded experiment with ammonium sulfate particles as seeds. The chemical composition and time-series of compounds in the gas- and particle- phase were characterized by an on-line high-resolution time-of-flight proton transfer reaction mass spectrometer (HR-ToF-PTRMS) and a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), respectively. Our results show that for the aerosol particles in cloud condensation nuclei (CCN) size, the mass concentration of ammonium (NH4+) was still rising even after the mass concentration of organic component started to decrease due to aerosol wall deposition and evaporation, implying the continuous new formation of particle phase ammonium in the process. Stoichiometric neutralization analysis of aerosol indicates that organic acids have a central role in the formation of particle phase ammonium. Our measurements show a good correlation between the gas phase organic mono- and di-carboxylic acids formed in the photooxidation of α-pinene and the ammonium in the particle phase, thus highlighting the contribution of gas-phase organic acids to the ammonium formation in the CCN-size SOA particles. The work shows that the gas-phase organic acids contribute to the SOA formation by forming ammonium salts through acid-base reaction. The changes in aerosol mass, particle size and chemical composition resulting from the NH3-SOA interaction can potentially alter the aerosol direct and indirect forcing and therefore alter its impact on climate change.


2019 ◽  
Vol 19 (7) ◽  
pp. 5235-5249 ◽  
Author(s):  
Kuangyou Yu ◽  
Qiao Zhu ◽  
Ke Du ◽  
Xiao-Feng Huang

Abstract. Organic nitrates are important atmospheric species that significantly affect the cycling of NOx and ozone production. However, characterization of particulate organic nitrates and their sources in polluted atmosphere is a big challenge and has not been comprehensively studied in Asia. In this study, an aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was deployed at an urban site in China from 2015 to 2016 to characterize particulate organic nitrates in total nitrates with a high time resolution. Based on the cross-validation of two different data processing methods, organic nitrates were effectively quantified to contribute a notable fraction of organic aerosol (OA), namely 9 %–21 % in spring, 11 %–25 % in summer, and 9 %–20 % in autumn, while contributing a very small fraction in winter. The good correlation between organic nitrates and fresh secondary organic aerosol (SOA) at night, as well as the diurnal trend of size distribution of organic nitrates, indicated a key role of nighttime local secondary formation of organic nitrates. Furthermore, theoretical calculations of nighttime SOA production of NO3 reactions with volatile organic compounds (VOCs) measured during the spring campaign were performed, resulting in three biogenic VOCs (α-pinene, limonene, and camphene) and one anthropogenic VOC (styrene) identified as the possible key VOC precursors to particulate organic nitrates. The comparison with similar studies in the literature implied that nighttime particulate organic nitrate formation is highly relevant to NOx levels. This study proposes that unlike the documented cases in the United States and Europe, modeling nighttime particulate organic nitrate formation in China should incorporate not only biogenic VOCs but also anthropogenic VOCs for urban air pollution, which needs the support of relevant smog chamber studies in the future.


2015 ◽  
Vol 15 (14) ◽  
pp. 7765-7776 ◽  
Author(s):  
F. D. Lopez-Hilfiker ◽  
C. Mohr ◽  
M. Ehn ◽  
F. Rubach ◽  
E. Kleist ◽  
...  

Abstract. We measured a large suite of gas- and particle-phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gas and particle phases, the latter being detected by temperature-programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO–HR-ToF-CIMS are highly correlated with, and explain at least 25–50 % of, the organic aerosol mass measured by an Aerodyne aerosol mass spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from high molecular weight organics and/or oligomers (i.e., multi-phase accretion reaction products). Approximately 50 % of the HR-ToF-CIMS particle-phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption-temperature-based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas-particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the conversion of lower volatility components into the detected higher volatility compounds.


2015 ◽  
Vol 15 (4) ◽  
pp. 4463-4494 ◽  
Author(s):  
F. D. Lopez-Hilfiker ◽  
C. Mohr ◽  
M. Ehn ◽  
F. Rubach ◽  
E. Kleist ◽  
...  

Abstract. We measured a large suite of gas and particle phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gas and particle phases, the latter being detected upon temperature programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO HR-ToF-CIMS are highly correlated with, and explain at least 25–50% of, the organic aerosol mass measured by an Aerodyne Aerosol Mass Spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from large molecular weight organics and/or oligomers (i.e. multi-phase accretion reaction products). Approximately 50% of the HR-ToF-CIMS particle phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption temperature based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas–particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the conversion of lower volatility components into the detected higher volatility compounds.


2015 ◽  
Vol 15 (20) ◽  
pp. 11807-11833 ◽  
Author(s):  
W. W. Hu ◽  
P. Campuzano-Jost ◽  
B. B. Palm ◽  
D. A. Day ◽  
A. M. Ortega ◽  
...  

Abstract. Substantial amounts of secondary organic aerosol (SOA) can be formed from isoprene epoxydiols (IEPOX), which are oxidation products of isoprene mainly under low-NO conditions. Total IEPOX-SOA, which may include SOA formed from other parallel isoprene oxidation pathways, was quantified by applying positive matrix factorization (PMF) to aerosol mass spectrometer (AMS) measurements. The IEPOX-SOA fractions of organic aerosol (OA) in multiple field studies across several continents are summarized here and show consistent patterns with the concentration of gas-phase IEPOX simulated by the GEOS-Chem chemical transport model. During the Southern Oxidant and Aerosol Study (SOAS), 78 % of PMF-resolved IEPOX-SOA is accounted by the measured IEPOX-SOA molecular tracers (2-methyltetrols, C5-Triols, and IEPOX-derived organosulfate and its dimers), making it the highest level of molecular identification of an ambient SOA component to our knowledge. An enhanced signal at C5H6O+ (m/z 82) is found in PMF-resolved IEPOX-SOA spectra. To investigate the suitability of this ion as a tracer for IEPOX-SOA, we examine fC5H6O (fC5H6O= C5H6O+/OA) across multiple field, chamber, and source data sets. A background of ~ 1.7 ± 0.1 ‰ (‰ = parts per thousand) is observed in studies strongly influenced by urban, biomass-burning, and other anthropogenic primary organic aerosol (POA). Higher background values of 3.1 ± 0.6 ‰ are found in studies strongly influenced by monoterpene emissions. The average laboratory monoterpene SOA value (5.5 ± 2.0 ‰) is 4 times lower than the average for IEPOX-SOA (22 ± 7 ‰), which leaves some room to separate both contributions to OA. Locations strongly influenced by isoprene emissions under low-NO levels had higher fC5H6O (~ 6.5 ± 2.2 ‰ on average) than other sites, consistent with the expected IEPOX-SOA formation in those studies. fC5H6O in IEPOX-SOA is always elevated (12–40 ‰) but varies substantially between locations, which is shown to reflect large variations in its detailed molecular composition. The low fC5H6O (< 3 ‰) reported in non-IEPOX-derived isoprene-SOA from chamber studies indicates that this tracer ion is specifically enhanced from IEPOX-SOA, and is not a tracer for all SOA from isoprene. We introduce a graphical diagnostic to study the presence and aging of IEPOX-SOA as a triangle plot of fCO2 vs. fC5H6O. Finally, we develop a simplified method to estimate ambient IEPOX-SOA mass concentrations, which is shown to perform well compared to the full PMF method. The uncertainty of the tracer method is up to a factor of ~ 2, if the fC5H6O of the local IEPOX-SOA is not available. When only unit mass-resolution data are available, as with the aerosol chemical speciation monitor (ACSM), all methods may perform less well because of increased interferences from other ions at m/z 82. This study clarifies the strengths and limitations of the different AMS methods for detection of IEPOX-SOA and will enable improved characterization of this OA component.


2018 ◽  
Author(s):  
Kuangyou Yu ◽  
Qiao Zhu ◽  
Ke Du ◽  
Xiao-Feng Huang

Abstract. Organic nitrates are important atmospheric species that significantly affect the cycling of NOx and ozone production. However, characterization of particulate organic nitrates and their sources in inorganic nitrate-abundant particles in polluted atmosphere is a big challenge, and has been little performed in the literature. In this study, an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was deployed at an urban site in South China from 2015 to 2016 to characterize particulate organic nitrates with high time resolution. Based on two different data processing methods, 13–21 % of the total measured nitrates was identified to be organic nitrates in spring, 41–64 % in summer and 16%–25 % in autumn; however, in winter, most measured nitrates were inorganic. The good correlation between organic nitrates and fresh secondary organic aerosol identified by the positive matrix factorization method at night rather than in the daytime indicated a potentially important role of nighttime secondary formation. Therefore, we theoretically estimated nighttime NO3 radical concentrations and SOA formation using the various VOCs measured simultaneously. Consequently, the calculated products of monoterpene reacting with NO3 agreed well with the organic nitrates in terms of both concentration and variation, suggesting that the biogenic VOC reactions with NO3 at night are the dominant formation pathway for particulate organic nitrates in polluted atmosphere, despite of much higher abundance of anthropogenic VOCs.


2012 ◽  
Vol 12 (10) ◽  
pp. 26297-26349 ◽  
Author(s):  
J. E. Shilling ◽  
R. A. Zaveri ◽  
J. D. Fast ◽  
L. Kleinman ◽  
M. L. Alexander ◽  
...  

Abstract. The CARES campaign was conducted during June 2010 in the vicinity of Sacramento, California to study aerosol formation and aging in a region where anthropogenic and biogenic emissions regularly mix. Here, we describe measurements from an Aerodyne High Resolution Aerosol Mass Spectrometer (AMS), an Ionicon Proton Transfer Reaction Mass Spectrometer (PTR-MS), and trace gas detectors (CO, NO, NOx) deployed on the G-1 research aircraft to investigate ambient gas- and particle-phase chemical composition. AMS measurements showed that the particle phase is dominated by organic aerosol (OA) (85% on average) with smaller concentrations of sulfate (5%), nitrate (6%) and ammonium (3%) observed. PTR-MS data showed that isoprene dominated the biogenic volatile organic compound concentrations (BVOCs), with monoterpene concentrations generally below the detection limit. Using two different metrics, median OA concentrations and the slope of plots of OA vs. CO concentrations (i.e. ΔOA/ΔCO), we contrast organic aerosol evolution on flight days with different prevailing meteorological conditions to elucidate the role of anthropogenic and biogenic emissions on OA formation. Airmasses influenced predominantly by biogenic emissions had median OA concentrations of 2.2 μg m−3 and near zero ΔOA/ΔCO. Those influenced predominantly by anthropogenic emissions had median OA concentrations of 4.7 μg m−3 and ΔOA/ΔCO ratios of 35–44 μg m−3 ppmv−1. But, when biogenic and anthropogenic emissions mixed, OA levels were dramatically enhanced, with median OA concentrations of 11.4 μg m−3 and ΔOA/ΔCO ratios of 77–157 μg m−3 ppmv−1. Taken together, our observations show that production of OA was enhanced when anthropogenic emissions from Sacramento mixed with isoprene-rich air from the foothills. A strong, non-linear dependence of SOA yield from isoprene is the explanation for this enhancement most consistent with both the gas- and particle-phase data. If these observations are found to be robust in other seasons and in areas outside of Sacramento, regional and global aerosol modules will need to incorporate more complex representations of NOx-dependent SOA yields into their algorithms. Ultimately, accurately predicting OA mass concentrations and their effect on radiation balance will require a mechanistically-based treatment of the interactions of biogenic and anthropogenic emissions.


2016 ◽  
Vol 16 (21) ◽  
pp. 13929-13944 ◽  
Author(s):  
Yuemei Han ◽  
Craig A. Stroud ◽  
John Liggio ◽  
Shao-Meng Li

Abstract. Secondary organic aerosol (SOA) formation from photooxidation of α-pinene has been investigated in a photochemical reaction chamber under varied inorganic seed particle acidity levels at moderate relative humidity. The effect of particle acidity on SOA yield and chemical composition was examined under high- and low-NOx conditions. The SOA yield (4.2–7.6 %) increased nearly linearly with the increase in particle acidity under high-NOx conditions. In contrast, the SOA yield (28.6–36.3 %) was substantially higher under low-NOx conditions, but its dependency on particle acidity was insignificant. A relatively strong increase in SOA yield (up to 220 %) was observed in the first hour of α-pinene photooxidation under high-NOx conditions, suggesting that SOA formation was more effective for early α-pinene oxidation products in the presence of fresh acidic particles. The SOA yield decreased gradually with the increase in organic mass in the initial stage (approximately 0–1 h) under high-NOx conditions, which is likely due to the inaccessibility to the acidity over time with the coating of α-pinene SOA, assuming a slow particle-phase diffusion of organic molecules into the inorganic seeds. The formation of later-generation SOA was enhanced by particle acidity even under low-NOx conditions when introducing acidic seed particles after α-pinene photooxidation, suggesting a different acidity effect exists for α-pinene SOA derived from later oxidation stages. This effect could be important in the atmosphere under conditions where α-pinene oxidation products in the gas-phase originating in forested areas (with low NOx and SOx) are transported to regions abundant in acidic aerosols such as power plant plumes or urban regions. The fraction of oxygen-containing organic fragments (CxHyO1+ 33–35 % and CxHyO2+ 16–17 %) in the total organics and the O ∕ C ratio (0.52–0.56) of α-pinene SOA were lower under high-NOx conditions than those under low-NOx conditions (39–40, 17–19, and 0.61–0.64 %), suggesting that α-pinene SOA was less oxygenated in the studied high-NOx conditions. The fraction of nitrogen-containing organic fragments (CxHyNz+ and CxHyOzNp+) in the total organics was enhanced with the increases in particle acidity under high-NOx conditions, indicating that organic nitrates may be formed heterogeneously through a mechanism catalyzed by particle acidity or that acidic conditions facilitate the partitioning of gas-phase organic nitrates into particle phase. The results of this study suggest that inorganic acidity has a significant role to play in determining various organic aerosol chemical properties such as mass yields, oxidation state, and organic nitrate content. The acidity effect being further dependent on the timescale of SOA formation is also an important parameter in the modeling of SOA.


Sign in / Sign up

Export Citation Format

Share Document