scholarly journals Analyzing the turbulent planetary boundary layer by remote sensing systems: the Doppler wind lidar, aerosol elastic lidar and microwave radiometer

2019 ◽  
Vol 19 (2) ◽  
pp. 1263-1280 ◽  
Author(s):  
Gregori de Arruda Moreira ◽  
Juan Luis Guerrero-Rascado ◽  
Jose A. Benavent-Oltra ◽  
Pablo Ortiz-Amezcua ◽  
Roberto Román ◽  
...  

Abstract. The planetary boundary layer (PBL) is the lowermost region of troposphere and is endowed with turbulent characteristics, which can have mechanical and/or thermodynamic origins. This behavior gives this layer great importance, mainly in studies about pollutant dispersion and weather forecasting. However, the instruments usually applied in studies of turbulence in the PBL have limitations in spatial resolution (anemometer towers) or temporal resolution (instrumentation aboard an aircraft). Ground-based remote sensing, both active and passive, offers an alternative for studying the PBL. In this study we show the capabilities of combining different remote sensing systems (microwave radiometer – MWR, Doppler lidar – DL – and elastic lidar – EL) for retrieving a detailed picture on the PBL turbulent features. The statistical moments of the high frequency distributions of the vertical wind velocity, derived from DL, and of the backscattered coefficient, derived from EL, are corrected by two methodologies, namely first lag correction and -2/3 law correction. The corrected profiles, obtained from DL data, present small differences when compared with the uncorrected profiles, showing the low influence of noise and the viability of the proposed methodology. Concerning EL, in addition to analyzing the influence of noise, we explore the use of different wavelengths that usually include EL systems operated in extended networks, like the European Aerosol Research Lidar Network (EARLINET), Latin American Lidar Network (LALINET), NASA Micro-Pulse Lidar Network (MPLNET) or Skyradiometer Network (SKYNET). In this way we want to show the feasibility of extending the capability of existing monitoring networks without strong investments or changes in their measurements protocols. Two case studies were analyzed in detail, one corresponding to a well-defined PBL and another corresponding to a situation with presence of a Saharan dust lofted aerosol layer and clouds. In both cases we discuss results provided by the different instruments showing their complementarity and the precautions to be applied in the data interpretation. Our study shows that the use of EL at 532 nm requires a careful correction of the signal using the first lag time correction in order to get reliable turbulence information on the PBL.

2018 ◽  
Author(s):  
Gregori de Arruda Moreira ◽  
Juan Luís Guerrero-Rascado ◽  
Jose Antonio Benavent-Oltra ◽  
Pablo Ortiz-Amezcua ◽  
Roberto Román ◽  
...  

Abstract. The Planetary Boundary Layer (PBL) is the lowermost region of troposphere and endowed with turbulent characteristics, which can have mechanical or thermodynamic origins. Such behavior gives to this layer great importance, mainly in studies about pollutant dispersion and weather forecasting. However, the instruments usually applied in studies about turbulence in the PBL have limitations in spatial resolution (anemometer towers) or temporal resolution (aircrafts). In this study we propose the synergetic use of remote sensing systems (microwave radiometer [MWR], Doppler lidar [DL] and elastic lidar [EL]) to analyze the PBL behavior. Furthermore, we show how some meteorological variables such as air temperature, aerosol number density, vertical wind, relative humidity and net radiation might influence the PBL dynamic. The statistical moments of the high frequency distributions of the vertical velocity, derived from DL and of the backscattered coefficient derived from EL, are corrected by two methodologies, namely first lag and −2/3 correction. The corrected profiles present small differences when compare against the uncorrected profiles, showing low influence of noise and the viability of the proposed methodology. Two case studies were analyzed in detail, one corresponding to a well-defined PBL and another one corresponding to a situation with presence of a Saharan dust lofted aerosol layer and clouds. In both cases the results provided by the different instruments are complementary, thus the synergistic use of the different systems allow us performing a detailed monitoring of the PBL.


2018 ◽  
Vol 176 ◽  
pp. 06010
Author(s):  
Gregori de A. Moreira ◽  
Juan L. Guerrero-Rascado ◽  
Jose A. Benavent-Oltra ◽  
Pablo Ortiz-Amezcua ◽  
Roberto Róman ◽  
...  

The Planetary Boundary Layer (PBL) is the lowermost part of the troposphere. In this work, we analysed some high order moments and PBL height detected continuously by three remote sensing systems: an elastic lidar, a Doppler lidar and a passive Microwave Radiometer, during the SLOPE-2016 campaign, which was held in Granada from May to August 2016. This study confirms the feasibility of these systems for the characterization of the PBL, helping us to justify and understand its behaviour along the day.


2020 ◽  
Vol 237 ◽  
pp. 03009
Author(s):  
Gregori de Arruda Moreira ◽  
Fábio Juliano da Silva Lopes ◽  
Juan Luis Guerrero-Rascado ◽  
Pablo Ortiz-Amezcua ◽  
Alberto Cazorla ◽  
...  

The Atmospheric Boundary Layer (ABL) is the lowermost part of the troposphere. In this work, we analysed the combination of ABL height estimated continuously by three different remote sensing systems: a ceilometer, a Doppler lidar and a passive Microwave Radiometer, during a summer campaign, which was held in Granada from June to August 2016. This study demonstrates as the combined utilization of remote sensing systems, based on different tracers, can provide detailed information about the height of ABL and their sublayers.


2011 ◽  
Vol 139 (8) ◽  
pp. 2327-2346 ◽  
Author(s):  
Daniel C. Hartung ◽  
Jason A. Otkin ◽  
Ralph A. Petersen ◽  
David D. Turner ◽  
Wayne F. Feltz

AbstractIn this study, atmospheric analyses obtained through assimilation of temperature, water vapor, and wind profiles from a potential network of ground-based remote sensing boundary layer profiling instruments were used to generate short-range ensemble forecasts for each assimilation experiment performed in Part I. Remote sensing systems evaluated during this study include the Doppler wind lidar (DWL), Raman lidar (RAM), microwave radiometer (MWR), and the Atmospheric Emitted Radiance Interferometer (AERI). Overall, the results show that the most accurate forecasts were achieved when mass (temperature and humidity profiles from the RAM, MWR, and/or AERI) and momentum (wind profiles from the DWL) observations were assimilated simultaneously, which is consistent with the main conclusion from Part I. For instance, the improved wind and moisture analyses obtained through assimilation of these observations contributed to more accurate forecasts of moisture flux convergence and the intensity and location of accumulated precipitation (ACPC) due to improved dynamical forcing and mesoscale boundary layer thermodynamic structure. An object-based verification tool was also used to assess the skill of the ACPC forecasts. Overall, total interest values for ACPC matched objects, along with traditional forecast skill statistics like the equitable threat score and critical success index, were most improved in the multisensor assimilation cases.


2017 ◽  
Vol 17 (11) ◽  
pp. 6839-6851 ◽  
Author(s):  
Juan Antonio Bravo-Aranda ◽  
Gregori de Arruda Moreira ◽  
Francisco Navas-Guzmán ◽  
María José Granados-Muñoz ◽  
Juan Luis Guerrero-Rascado ◽  
...  

Abstract. The automatic and non-supervised detection of the planetary boundary layer height (zPBL) by means of lidar measurements was widely investigated during the last several years. Despite considerable advances, the experimental detection still presents difficulties such as advected aerosol layers coupled to the planetary boundary layer (PBL) which usually produces an overestimation of the zPBL. To improve the detection of the zPBL in these complex atmospheric situations, we present a new algorithm, called POLARIS (PBL height estimation based on lidar depolarisation). POLARIS applies the wavelet covariance transform (WCT) to the range-corrected signal (RCS) and to the perpendicular-to-parallel signal ratio (δ) profiles. Different candidates for zPBL are chosen and the selection is done based on the WCT applied to the RCS and δ. We use two ChArMEx (Chemistry-Aerosol Mediterranean Experiment) campaigns with lidar and microwave radiometer (MWR) measurements, conducted in 2012 and 2013, for the POLARIS' adjustment and validation. POLARIS improves the zPBL detection compared to previous methods based on lidar measurements, especially when an aerosol layer is coupled to the PBL. We also compare the zPBL provided by the Weather Research and Forecasting (WRF) numerical weather prediction (NWP) model with respect to the zPBL determined with POLARIS and the MWR under Saharan dust events. WRF underestimates the zPBL during daytime but agrees with the MWR during night-time. The zPBL provided by WRF shows a better temporal evolution compared to the MWR during daytime than during night-time.


2014 ◽  
Vol 14 (10) ◽  
pp. 15419-15462 ◽  
Author(s):  
M. Collaud Coen ◽  
C. Praz ◽  
A. Haefele ◽  
D. Ruffieux ◽  
P. Kaufmann ◽  
...  

Abstract. The planetary boundary layer (PBL) height is a key parameter in air quality control and pollutant dispersion. The PBL height can however not be directly measured and its estimation relies on the analysis of the vertical profiles of the temperature, the turbulences or the atmospheric composition. An operational PBL height detection including several remote sensing instruments (windprofiler, Raman lidar, microwave radiometer) and several algorithms (Parcel and bulk Richardson number methods, surface-based temperature inversion, aerosol or humidity gradient analysis) were developed and the first year of application allowed validating these various detection methods against radio sounding measurements. The microwave radiometer provides convective boundary layer heights in good agreement with the radio sounding (median bias < 25 m, R2 > 0.70) and allows to fully analyzing the PBL height diurnal cycle due to its smaller time granularity. The Raman lidar also leads to good results whereas the windprofiler yields some more dispersed results. Comparisons with the numerical weather prediction model COSMO-2 were also established and point out a general overestimation by the model. Finally the seasonal cycles of the daytime and nighttime PBL heights are discussed for each instrument and each detection algorithm for two stations on the Swiss plateau.


2014 ◽  
Vol 14 (23) ◽  
pp. 13205-13221 ◽  
Author(s):  
M. Collaud Coen ◽  
C. Praz ◽  
A. Haefele ◽  
D. Ruffieux ◽  
P. Kaufmann ◽  
...  

Abstract. The planetary boundary layer (PBL) height is a key parameter in air quality control and pollutant dispersion. The PBL height cannot, however, be directly measured, and its estimation relies on the analysis of the vertical profiles of the temperature, turbulence or the atmospheric composition. An operational PBL height detection method including several remote sensing instruments (wind profiler, Raman lidar, microwave radiometer) and several algorithms (Parcel and bulk Richardson number methods, surface-based temperature inversion, aerosol or humidity gradient analysis) was developed and tested with 1 year of measurements, which allows the methods to be validated against radio sounding measurements. The microwave radiometer provides convective boundary layer heights in good agreement with the radio sounding (RS) (median bias < 25 m, R2 > 0.70) and allows the analysis of the diurnal variation of the PBL height due to its high temporal resolution. The Raman lidar also leads to a good agreement with RS, whereas the wind profiler yields some more dispersed results mostly due to false attribution problems. A comparison with the numerical weather prediction model COSMO-2 has shown a general overestimation of the model PBL height by some hundreds to thousand meters. Finally the seasonal cycles of the daytime and nighttime PBL heights are discussed for each instrument and each detection algorithm for two stations on the Swiss plateau.


1995 ◽  
Author(s):  
S. D. Lockwood ◽  
D. Hardin ◽  
G. J. Miller ◽  
C. Meesuk ◽  
P. R. Straus

Sign in / Sign up

Export Citation Format

Share Document