scholarly journals Studying turbulence by remote sensing systems during slope-2016 campaign

2018 ◽  
Vol 176 ◽  
pp. 06010
Author(s):  
Gregori de A. Moreira ◽  
Juan L. Guerrero-Rascado ◽  
Jose A. Benavent-Oltra ◽  
Pablo Ortiz-Amezcua ◽  
Roberto Róman ◽  
...  

The Planetary Boundary Layer (PBL) is the lowermost part of the troposphere. In this work, we analysed some high order moments and PBL height detected continuously by three remote sensing systems: an elastic lidar, a Doppler lidar and a passive Microwave Radiometer, during the SLOPE-2016 campaign, which was held in Granada from May to August 2016. This study confirms the feasibility of these systems for the characterization of the PBL, helping us to justify and understand its behaviour along the day.

2020 ◽  
Vol 237 ◽  
pp. 03009
Author(s):  
Gregori de Arruda Moreira ◽  
Fábio Juliano da Silva Lopes ◽  
Juan Luis Guerrero-Rascado ◽  
Pablo Ortiz-Amezcua ◽  
Alberto Cazorla ◽  
...  

The Atmospheric Boundary Layer (ABL) is the lowermost part of the troposphere. In this work, we analysed the combination of ABL height estimated continuously by three different remote sensing systems: a ceilometer, a Doppler lidar and a passive Microwave Radiometer, during a summer campaign, which was held in Granada from June to August 2016. This study demonstrates as the combined utilization of remote sensing systems, based on different tracers, can provide detailed information about the height of ABL and their sublayers.


2019 ◽  
Vol 19 (2) ◽  
pp. 1263-1280 ◽  
Author(s):  
Gregori de Arruda Moreira ◽  
Juan Luis Guerrero-Rascado ◽  
Jose A. Benavent-Oltra ◽  
Pablo Ortiz-Amezcua ◽  
Roberto Román ◽  
...  

Abstract. The planetary boundary layer (PBL) is the lowermost region of troposphere and is endowed with turbulent characteristics, which can have mechanical and/or thermodynamic origins. This behavior gives this layer great importance, mainly in studies about pollutant dispersion and weather forecasting. However, the instruments usually applied in studies of turbulence in the PBL have limitations in spatial resolution (anemometer towers) or temporal resolution (instrumentation aboard an aircraft). Ground-based remote sensing, both active and passive, offers an alternative for studying the PBL. In this study we show the capabilities of combining different remote sensing systems (microwave radiometer – MWR, Doppler lidar – DL – and elastic lidar – EL) for retrieving a detailed picture on the PBL turbulent features. The statistical moments of the high frequency distributions of the vertical wind velocity, derived from DL, and of the backscattered coefficient, derived from EL, are corrected by two methodologies, namely first lag correction and -2/3 law correction. The corrected profiles, obtained from DL data, present small differences when compared with the uncorrected profiles, showing the low influence of noise and the viability of the proposed methodology. Concerning EL, in addition to analyzing the influence of noise, we explore the use of different wavelengths that usually include EL systems operated in extended networks, like the European Aerosol Research Lidar Network (EARLINET), Latin American Lidar Network (LALINET), NASA Micro-Pulse Lidar Network (MPLNET) or Skyradiometer Network (SKYNET). In this way we want to show the feasibility of extending the capability of existing monitoring networks without strong investments or changes in their measurements protocols. Two case studies were analyzed in detail, one corresponding to a well-defined PBL and another corresponding to a situation with presence of a Saharan dust lofted aerosol layer and clouds. In both cases we discuss results provided by the different instruments showing their complementarity and the precautions to be applied in the data interpretation. Our study shows that the use of EL at 532 nm requires a careful correction of the signal using the first lag time correction in order to get reliable turbulence information on the PBL.


2018 ◽  
Author(s):  
Gregori de Arruda Moreira ◽  
Juan Luís Guerrero-Rascado ◽  
Jose Antonio Benavent-Oltra ◽  
Pablo Ortiz-Amezcua ◽  
Roberto Román ◽  
...  

Abstract. The Planetary Boundary Layer (PBL) is the lowermost region of troposphere and endowed with turbulent characteristics, which can have mechanical or thermodynamic origins. Such behavior gives to this layer great importance, mainly in studies about pollutant dispersion and weather forecasting. However, the instruments usually applied in studies about turbulence in the PBL have limitations in spatial resolution (anemometer towers) or temporal resolution (aircrafts). In this study we propose the synergetic use of remote sensing systems (microwave radiometer [MWR], Doppler lidar [DL] and elastic lidar [EL]) to analyze the PBL behavior. Furthermore, we show how some meteorological variables such as air temperature, aerosol number density, vertical wind, relative humidity and net radiation might influence the PBL dynamic. The statistical moments of the high frequency distributions of the vertical velocity, derived from DL and of the backscattered coefficient derived from EL, are corrected by two methodologies, namely first lag and −2/3 correction. The corrected profiles present small differences when compare against the uncorrected profiles, showing low influence of noise and the viability of the proposed methodology. Two case studies were analyzed in detail, one corresponding to a well-defined PBL and another one corresponding to a situation with presence of a Saharan dust lofted aerosol layer and clouds. In both cases the results provided by the different instruments are complementary, thus the synergistic use of the different systems allow us performing a detailed monitoring of the PBL.


2021 ◽  
Author(s):  
Donato Summa ◽  
Paolo Di Girolamo ◽  
Noemi Franco ◽  
Benedetto De Rosa ◽  
Fabio Madonna ◽  
...  

<p>The exchange processes between the Earth and the atmosphere play a crucial role in the development of the Planetary Boundary Layer (PBL). Different remote sensing techniques can provide PBL measurement with different spatial and temporal resolutions. Vertical profiles of atmospheric thermodynamic variables, i.e.  temperature and humidity, or wind speed, clouds and aerosols can be used as proxy to retrieve PBL height from active and passive remote sensing instruments. The University of BASILicata ground-based Raman Lidar system (BASIL) was deployed in the North-Western Mediterranean basin in the Cévennes-Vivarais site (Candillargues, Southern France, Lat: 43°37' N, Long: 4° 4' E, Elev: 1 m) and operated between 5 September and 5 November 2012, collecting more than 600 hours of measurements, distributed over 51 days and 19 intensive observation periods (IOPs). BASIL is capable to provide high-resolution and accurate measurements of atmospheric temperature and water vapour, both in daytime and night-time, based on the application of the rotational and vibrational Raman lidar techniques in the UV. This measurement capability makes BASIL a key instrument for the characterization of the water vapour concentration. BASIL makes use of a Nd:YAG laser source capable of emitting pulses at 355, 532 and 1064 nm, with a single pulse energy at 355nm of 500 mJ [1] .In the presented research effort, water vapour concentration was  computed and used to determine the PBL height. [2]. A dynamic index  included in the European Centre for Medium-range Weather Forecasts (ECMWF) ERA5 atmospheric reanalysis (CAPE, Friction velocity, etc.) is also considered and compared with BASIL resutls. ERA5 provides hourly data on regular latitude-longitude grids at 0.25° x 0.25° resolution at 37 pressure levels [3]. ERA5 is publicly available through the Copernicus Climate Data Store (CDS, https://cds.climate.copernicus.eu).  In order to properly carry out the comparison, the nearest ERA5 grid point to the lidar site has been considered assuming the representativeness uncertainty due to the use of the nearest grid-point comparable with other methods (e.g. kriging, bilinear interpolation, etc.). More results from this  measurement  effort will  be reported and discussed at the Conference.</p><p><strong>Reference</strong></p><p>[1] Di Girolamo, Paolo, De Rosa, Benedetto, Flamant, Cyrille, Summa, Donato, Bousquet, Olivier, Chazette, Patrick, Totems, Julien, Cacciani, Marco. Water vapor mixing ratio and temperature inter-comparison results in the framework of the Hydrological Cycle in the Mediterranean Experiment—Special Observation Period 1. BULLETIN OF ATMOSPHERIC SCIENCE AND TECHNOLOGY, ISSN: 2662-1495, doi: 10.1007/s42865-020-00008-3</p><p>[2] D. Summa, P. Di Girolamo, D. Stelitano, and M. Cacciani. Characterization of the planetary boundary layer height and structure by Raman lidar: comparison of different approaches  Atmos. Meas. Tech., 6, 3515–3525, 2013 www.atmos-meas-tech.net/6/3515/2013/doi:10.5194/amt-6-3515-2013</p><p>[3] Hersbach et al. The ERA5 global reanalysis Hans  https://doi.org/10.1002/qj.3803[3]</p>


2011 ◽  
Vol 139 (8) ◽  
pp. 2327-2346 ◽  
Author(s):  
Daniel C. Hartung ◽  
Jason A. Otkin ◽  
Ralph A. Petersen ◽  
David D. Turner ◽  
Wayne F. Feltz

AbstractIn this study, atmospheric analyses obtained through assimilation of temperature, water vapor, and wind profiles from a potential network of ground-based remote sensing boundary layer profiling instruments were used to generate short-range ensemble forecasts for each assimilation experiment performed in Part I. Remote sensing systems evaluated during this study include the Doppler wind lidar (DWL), Raman lidar (RAM), microwave radiometer (MWR), and the Atmospheric Emitted Radiance Interferometer (AERI). Overall, the results show that the most accurate forecasts were achieved when mass (temperature and humidity profiles from the RAM, MWR, and/or AERI) and momentum (wind profiles from the DWL) observations were assimilated simultaneously, which is consistent with the main conclusion from Part I. For instance, the improved wind and moisture analyses obtained through assimilation of these observations contributed to more accurate forecasts of moisture flux convergence and the intensity and location of accumulated precipitation (ACPC) due to improved dynamical forcing and mesoscale boundary layer thermodynamic structure. An object-based verification tool was also used to assess the skill of the ACPC forecasts. Overall, total interest values for ACPC matched objects, along with traditional forecast skill statistics like the equitable threat score and critical success index, were most improved in the multisensor assimilation cases.


2006 ◽  
Vol 15 (1) ◽  
pp. 65-72 ◽  
Author(s):  
Jan Cermak ◽  
Marc Schneebeli ◽  
Daniela Nowak ◽  
Laurent Vuilleumier ◽  
Jörg Bendix

2018 ◽  
Vol 213 ◽  
pp. 185-195 ◽  
Author(s):  
Gregori de Arruda Moreira ◽  
Juan Luis Guerrero-Rascado ◽  
Juan Antonio Bravo-Aranda ◽  
José Antonio Benavent-Oltra ◽  
Pablo Ortiz-Amezcua ◽  
...  

2014 ◽  
Vol 14 (10) ◽  
pp. 15419-15462 ◽  
Author(s):  
M. Collaud Coen ◽  
C. Praz ◽  
A. Haefele ◽  
D. Ruffieux ◽  
P. Kaufmann ◽  
...  

Abstract. The planetary boundary layer (PBL) height is a key parameter in air quality control and pollutant dispersion. The PBL height can however not be directly measured and its estimation relies on the analysis of the vertical profiles of the temperature, the turbulences or the atmospheric composition. An operational PBL height detection including several remote sensing instruments (windprofiler, Raman lidar, microwave radiometer) and several algorithms (Parcel and bulk Richardson number methods, surface-based temperature inversion, aerosol or humidity gradient analysis) were developed and the first year of application allowed validating these various detection methods against radio sounding measurements. The microwave radiometer provides convective boundary layer heights in good agreement with the radio sounding (median bias < 25 m, R2 > 0.70) and allows to fully analyzing the PBL height diurnal cycle due to its smaller time granularity. The Raman lidar also leads to good results whereas the windprofiler yields some more dispersed results. Comparisons with the numerical weather prediction model COSMO-2 were also established and point out a general overestimation by the model. Finally the seasonal cycles of the daytime and nighttime PBL heights are discussed for each instrument and each detection algorithm for two stations on the Swiss plateau.


Sign in / Sign up

Export Citation Format

Share Document