scholarly journals The influence of spatiality on shipping emissions, air quality and potential human exposure in the Yangtze River Delta/Shanghai, China

2019 ◽  
Vol 19 (9) ◽  
pp. 6167-6183 ◽  
Author(s):  
Junlan Feng ◽  
Yan Zhang ◽  
Shanshan Li ◽  
Jingbo Mao ◽  
Allison P. Patton ◽  
...  

Abstract. The Yangtze River Delta (YRD) and the megacity of Shanghai are host to one of the busiest port clusters in the world; the region also suffers from high levels of air pollution. The goal of this study was to estimate the contributions of shipping to regional emissions, air quality, and population exposure and to characterize the importance of the geographic spatiality of shipping lanes and different types of ship-related sources for the baseline year of 2015, which was prior to the implementation of China's Domestic Emission Control Areas (DECAs) in 2016. The WRF-CMAQ model, which combines the Weather Research and Forecasting model (WRF) and the Community Multi-scale Air Quality (CMAQ) model, was used to simulate the influence of coastal and inland-water shipping, port emissions and ship-related cargo transport on air quality and on the population-weighted concentrations (which is a measure of human exposure). Our results showed that the impact of shipping on air quality in the YRD was primarily attributable to shipping emissions within 12 NM (nautical miles) of shore, but emissions coming from the coastal area between 24 and 96 NM still contributed substantially to ship-related PM2.5 concentrations in the YRD. The overall contribution of ships to the PM2.5 concentration in the YRD could reach 4.62 µg m−3 in summer when monsoon winds transport shipping emissions onshore. In Shanghai city, inland-water going ships were major contributors (40 %–80 %) to the shipping impact on urban air quality. Given the proximity of inland-water ships to the urban populations of Shanghai, the emissions of inland-water ships contributed more to population-weighted concentrations. These research results provide scientific evidence to inform policies for controlling future shipping emissions; in particular, in the YRD region, expanding the boundary of 12 NM from shore in China's current DECA policy to around 100 NM from shore would include most of shipping emissions affecting air pollutant exposure, and stricter fuel standards could be considered for the ships on inland rivers and other waterways close to residential regions.

2018 ◽  
Author(s):  
Junlan Feng ◽  
Yan Zhang ◽  
Shanshan Li ◽  
Jingbo Mao ◽  
Allison P. Patton ◽  
...  

Abstract. The Yangtze River Delta (YRD) and the megacity of Shanghai are host to one of the busiest port clusters in the world, the region also suffers from high levels of air pollution. The goal of this study was to estimate the contributions of shipping to emissions, air quality, and population exposure and characterize their dependence on the geographic spatiality of ship lanes from the regional scale to city scale for 2015. The WRF-CMAQ model was used to simulate the influence of coastal and inland-water shipping, in port emissions, shipping-related cargo transport on air quality and, population-weighted concentrations, a measure of human exposure. Our results showed that the impact of shipping on air quality in the YRD was attributable primarily to shipping emissions within 12 NM of shore, but emissions coming from the coastal area of 24 to 96 NM still contributed substantially to ship-related PM2.5 concentrations in YRD. The overall contribution of ships to PM2.5 concentration in YRD could reach to 4.62 μg/m3 in summer when monsoon winds transport shipping emissions onshore. In Shanghai city, inland-water going ships were major contributors (40–80 %) to the shipping impact on urban air quality. Given the proximity of inland-water ships to urban populations of Shanghai, the emissions of inland-water ships contributed more to population-weighted concentrations. These research results provide scientific evidence to inform policies for controlling future shipping emissions; in particular, stricter standards could be considered for the ships on inland rivers and other waterways close to residential regions.


2013 ◽  
Vol 13 (8) ◽  
pp. 21507-21540
Author(s):  
X. Fu ◽  
S. X. Wang ◽  
Z. Cheng ◽  
J. Xing ◽  
B. Zhao ◽  
...  

Abstract. During 1 to 6 May 2011, a dust event was observed in the Yangtze River Delta region (YRD). The highest PM10 concentration reached over 1000 μg m−3 and the visibility was below 3 km. In this study, the Community Multi-scale Air Quality modeling system (CMAQ5.0) coupled with an in-line windblown dust model was used to simulate the formation, spatial and temporal characteristics of this dust event, and analyze its impacts on deposition and photochemistry. The threshold friction velocity for loose smooth surface in the dust model was revised based on Chinese data to improve the model performance. The comparison between predictions and observations indicates the revised model can reproduce the transport and pollution of the event. The simulation results show that the dust event was affected by formation and transport of Mongolian cyclone and cold air. Totally about 695 kt dust particles (PM10) were emitted in Xinjiang Province and Mongolia during 28 to 30 April, the dust band swept northern, eastern China and then arrived in the YRD region on 1 May 2011. The transported dust particles increased the mean surface layer concentrations of PM10 in the YRD region by 372% during 1 to 6 May and the impacts weakened from north to south due to the removal of dust particles along the path. Accompanied by high PM concentration, the dry deposition, wet deposition and total deposition of PM10 in the YRD reached 184.7 kt, 172.6 kt and 357.32 kt, respectively. These deposited particles are very harmful because of their impacts on urban environment as well as air quality and human health when resuspending in the atmosphere. Due to the impacts of mineral dust on atmospheric photolysis, the concentrations of O3 and OH were reduced by 1.5% and 3.1% in the whole China, and by 9.4% and 12.1% in the YRD region, respectively. The work of this manuscript is meaningful for understanding the dust emissions in China as well as for the application of CMAQ in Asia. It is also helpful to understand the formation mechanism and impacts of dust pollution in the YRD.


2019 ◽  
Vol 8 (4) ◽  
pp. 8255-8259

Aerosols played an important role in climate change during recent years in China. Many kinds of researches in different areas in China, particularly over the Yangtze River Delta (YRD) region in East China is measured during the period from January 2013 to December 2015. The Moderate Resolution Imaging Spectroradiometer (MODIS) derived aerosol optical depth (AOD), particulate matter concentrations (PM2.5) and surface black carbon (BCS) was used in this study. Nanjing, Hangzhou, Shanghai, and Ningbo have been selected in this research as they are the major cities of the YRD region that represents different environments. Variation of AOD550, Ångström exponent (AE470-660) and PM2.5 are mainly discussed, and meanwhile, the relationship that exists between them and with the meteorology is also discussed in this work. Apart from this, the impact of visibility and water vapor are also considered to examine the influence on optical properties. The data and analysis indicate that urban cities have a higher value of AOD than rural background cities. High AOD was noticed in summer than in other seasons. AOD usually has a negative relationship with AE, except in summer. Similarly, the PM2.5 has a negative relationship with AOD, whereas, BCS has a positive correlation with AOD. Further, it was observed that the rise in temperature resulted in high AOD concentration. The visibility has negative effect on AOD, whereas, AQI follows similar pattern as that of visibility.


Land ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 106
Author(s):  
Jie Zhao ◽  
Cheng Li

A comprehensive understanding of the ecosystem services (ESs) trade-off/synergy relationships has become increasingly important for ecological management and sustainable development. This study employed the Yangtze River Delta (YRD) region in China as the study area and investigated the spatiotemporal changes in three ESs, namely, carbon storage (CS), water purification (WP), and habitat quality (HQ). A trade-off/synergy degree (TSD) indicator was developed that allowed for the quantification of the trade-off/synergy intensity, and the spatial pattern of the TSD between ESs in the YRD region to be analyzed. Furthermore, a geographically weighted regression (GWR) model was used to analyze the relationship between the influencing factors and trade-offs/synergies. The results revealed that CS, WP, and HQ decreased by 0.28%, 2.49%, and 3.38%, respectively, from 2005 to 2015. The TSD indicator showed that the trade-off/synergy relationships and their magnitudes were spatially heterogeneous throughout the YRD region. The coefficients of the natural and socioeconomic factors obtained from the GWR indicated that their impacts on the trade-offs/synergies vary spatiotemporally. The impact factors had both positive and negative effects on the trade-offs/synergies. The findings of this study could improve the understanding of the spatiotemporal dynamics of trade-offs/synergies and their spatially heterogeneous correlations with related factors.


Author(s):  
Wei Zhao ◽  
Xuan Liu ◽  
Qingxin Deng ◽  
Dongyang Li ◽  
Jianing Xu ◽  
...  

China is urbanizing rapidly, but current research into the spatiotemporal characteristics of urbanization often ignores the spatial and evolutionary associations of cities. Using the theory of spatial polarization and diffusion, together with a systematic analysis method, this study examined the spatial development process of urbanization in the Yangtze River Delta (YRD) region of China during 1995–2015. Results showed clear patterns in the scale and hierarchy of regional urbanization. Shanghai ranked first as the regional growth pole, while Nanjing, Hangzhou, and Suzhou ranked second. The spatial linkage index of urbanization showed that 10 cities (including Shanghai, Suzhou, and Hangzhou) constituted the densest spatial linkage network. The diffused area often became spatially polarized before the polarization then weakened as a new diffusion stage developed. The study also revealed that the spatial correlation urbanization differences in the YRD generally decreased. The polarization index revealed increasing spatial integration and correlation of urbanization in the YRD. This study proved that each city had a different spatial role in relation to other cities during different stages of development. Investigation of the driving mechanism of regional urbanization indicated that industrial modernization and relocation within the region provided the main endogenous driving force for the formation of spatial polarization or diffusion. Our research provides important scientific support for regional development planning. Furthermore, our analysis of the impact of spatial correlation within cities or a region could provide an important reference in relation to the regional environment and public health.


2010 ◽  
Vol 10 (10) ◽  
pp. 23657-23703
Author(s):  
L. Li ◽  
C. H. Chen ◽  
C. Huang ◽  
Y. J. Wang ◽  
H. Y. Huang ◽  
...  

Abstract. Regional trans-boundary air pollution has become an important issue in the field of air pollution modeling. This paper presents the results of the implementation of the MM5-CMAQ modeling system in the Yangtze River Delta (YRD) for the months of January and July of 2004. The meteorological parameters are obtained by using the MM5 model. A new regional emission inventory with spatial and temporal allocations based on local statistical data has been developed to provide input emissions data to the MM5-CMAQ modeling system. The pollutant concentrations obtained from the MM5-CMAQ modeling system have been compared with observational data from the national air pollution monitoring network. It is found that air quality in winter in the YRD is generally worse than in summer, due mainly to unfavorable meteorological dispersion conditions. In winter the pollution transport from Northern China to the YRD reinforces the pollution caused by large local emissions. The monthly average concentration of SO2 in the YRD is 0.026 ± 0.011 mg m−3 in January and 0.017 ± 0.009 mg m−3 in July. Monthly average concentrations of NO2 in the YRD in January and July are 0.021 ± 0.009 mg m−3, and 0.014 ± 0.008 mg m−3 respectively. Visibility is also a problem, with average deciview values of 26.4 ± 2.95 dcv in winter and 17.6 ± 3.3 dcv in summer. The ozone concentration in the downtown area of a city like Zhoushan can be very high, with the highest simulated value reaching 107 ppb. Our results show that ozone and haze have become extremely important issues in the regional air quality. Thus, regional air pollution control is urgently needed to improve air quality in the YRD.


2020 ◽  
Vol 20 (22) ◽  
pp. 13781-13799
Author(s):  
Chenchao Zhan ◽  
Min Xie ◽  
Chongwu Huang ◽  
Jane Liu ◽  
Tijian Wang ◽  
...  

Abstract. Landfall typhoons can significantly affect O3 in the Yangtze River Delta (YRD) region. In this study, we investigate a unique case characterized by two multiday regional O3 pollution episodes related to four successive landfall typhoons in the summer of 2018 in the YRD. The results show that O3 pollution episodes mainly occurred during the period from the end of a typhoon to the arrival of the next typhoon. The time when a typhoon reached the 24 h warning line and the time when the typhoon dies away in mainland China can be roughly regarded as time nodes. Meanwhile, the variations of O3 were related to the track, duration and landing intensity of the typhoons. The impact of typhoons on O3 was like a wave superimposed on the background of high O3 concentration in the YRD in summer. When a typhoon was near the 24 h warning line before it landed on the coastline of the YRD, the prevailing wind originally from the ocean changed to be from inland, and it transported lots of precursors from the polluted areas to the YRD. Under influences of the typhoon, the low temperature, strong upward airflows, more precipitation and wild wind hindered occurrences of high O3 episodes. After the passing of the typhoon, the air below the 700 hPa atmospheric layer was warm and dry, and the downward airflows resumed. The low troposphere was filed with high concentration of O3 due to O3-rich air transported from the low stratosphere and strong photochemical reactions. It is noteworthy that O3 was mainly generated in the middle of the boundary layer (∼ 1000 m) instead of at the surface. High O3 levels remained in the residual layer at night, and would be transported to the surface by downward airflows or turbulence by the second day. Moreover, O3 can be accumulated and trapped on the ground due to the poor diffusion conditions because the vertical diffusion and horizontal diffusion were suppressed by downward airflows and light wind, respectively. The premature deaths attributed to O3 exposure in the YRD during the study period were 194.0, more than the casualties caused directly by the typhoons. This work has enhanced our understanding of how landfall typhoons affect O3 in the YRD and thus can be useful in forecasting O3 pollution in regions strongly influenced by typhoon activities.


2020 ◽  
Author(s):  
Chenchao Zhan ◽  
Min Xie ◽  
Chongwu Huang ◽  
Tijian Wang ◽  
Jane Liu ◽  
...  

Abstract. Landfall typhoon can significantly affect O3 in the Yangtze River Delta (YRD) region. In this study, we investigate a unique case characterized by two multiday regional O3 pollution episodes related to four successive landfall typhoons in the summer of 2018 in the YRD. The results show that O3 pollution episodes mainly occurred during the period from the end of typhoon and the arrival of the next typhoon. The moment that typhoon reached the 24-h warning line and the last moment of typhoon activity in the mainland China can be roughly regarded as time nodes. Meanwhile, the variations of O3 was related to the track, duration and landing intensity of the typhoons. The impact of typhoon on O3 was like a wave superimposed on the background of high O3 concentration in the YRD in summer. When typhoon was near the 24-h warning line before it landed the coast line of the YRD, the prevailing wind originally from the ocean changed to from the inland, and transported lots of precursors from the polluted areas to the YRD. With typhoon, the low temperature, strong upward airflows, more precipitation and wild wind prevented high O3 episodes. After typhoon, the air below the 700 hPa atmospheric layer was warm and dry, which was conductive to the formation of O3 from the abundance of precursors. It is note-worthy that O3 is mainly generated in the middle of boundary layer (~ 1000 m), and then transported to the surface by downward airflows or turbulences. Moreover, O3 can be accumulated and trapped on the ground due to the poor diffusion conditions because the vertical diffusion and horizontal diffusion were suppressed by downward airflows and light wind, respectively. The premature mortalities attributed to O3 exposure in the YRD during the study period is 194.0, more than the casualties caused directly by the typhoons. This work enhances our understanding of how landfall typhoons affect O3 in the YRD, which can be helpful to forecast the O3 pollution synthetically impacted by the subtropical high and typhoon.


2011 ◽  
Vol 11 (4) ◽  
pp. 1621-1639 ◽  
Author(s):  
L. Li ◽  
C. H. Chen ◽  
J. S. Fu ◽  
C. Huang ◽  
D. G. Streets ◽  
...  

Abstract. Regional trans-boundary air pollution has become an important issue in the field of air pollution modeling. This paper presents the results of the implementation of the MM5-CMAQ modeling system in the Yangtze River Delta (YRD) for the months of January and July of 2004. The meteorological parameters are obtained by using the MM5 model. A new regional emission inventory with spatial and temporal allocations based on local statistical data has been developed to provide input emissions data to the MM5-CMAQ modeling system. The pollutant concentrations obtained from the MM5-CMAQ modeling system have been compared with observational data from the national air pollution monitoring network. It is found that air quality in winter in the YRD is generally worse than in summer, due mainly to unfavorable meteorological dispersion conditions. In winter, the pollution transport from Northern China to the YRD reinforces the pollution caused by large local emissions. The monthly average concentration of SO2 in the YRD is 0.026 ± 0.011 mg m−3 in January and 0.017 ± 0.009 mg m−3 in July. Monthly average concentrations of NO2 in the YRD in January and July are 0.021 ± 0.009 mg m−3, and 0.014 ± 0.008 mg m−3, respectively. The monthly average concentration of PM10 in the YRD is 0.080 ± 0.028 mg m−3 in January and 0.025 ± 0.015 mg m−3 in July. Visibility is also a problem, with average deciview values of 26.4 ± 2.95 dcv in winter and 17.6 ± 3.3 dcv in summer. The ozone concentration in the downtown area of a city like Zhoushan can be very high, with the highest simulated value reaching 0.24 mg m−3. In January, the monthly average concentration of O3 in the YRD is 0.052 ± 0.011 mg m−3, and 0.054 ± 0.008 mg m−3 in July. Our results show that ozone and haze have become extremely important issues in the regional air quality. Thus, regional air pollution control is urgently needed to improve air quality in the YRD.


Sign in / Sign up

Export Citation Format

Share Document