population exposure
Recently Published Documents


TOTAL DOCUMENTS

765
(FIVE YEARS 306)

H-INDEX

43
(FIVE YEARS 10)

Author(s):  
Ziqiang Ye ◽  
Song Song ◽  
Runfei Zhong

Regional Climatic Comfort Index (CCI) deteriorated significantly due to the climate change and anthropogenic interference. Knowledge regarding the long-term temporal dynamics of CCI in typical regions should be strengthened. In this study, we analyze the temporal and spatial evolution of CCI from 1969 to 2018 in Guangdong Province, based on meteorological indicators, including heat, humidity, wind and cloth loading etc.. Additionally, the population exposure to climate unconformity was examined since 1990 with the help of population data. Our study found that: (1) the warming and humidifying of the summer climate served as the main driving force for the continuous deterioration of CCI, with the comfortable days decreased by 1.06d/10a and the extremely muggy days increased by 2.83d/10a; (2) spatially, the lowest climate comfortability concentrated in southwestern Guangdong with more than 50 uncomfortable days each year, while the climate comfortability in northeastern Guangdong tends to deteriorated whit higher rate, which can reach as high as 6d/10a; (3) in summer, the population exposure to uncomfortable climate highly centralized in the Pearl River Delta, Shantou, Jieyang, and the surrounding areas, and both area and population exposure showed increasing trends. Particularly, Shenzhen held the highest growth rate of population exposure with an increase rate of 2.94 million/10a; (4) although the discomfort distribution and deterioration rate vary across the province, the spatial heterogeneity of comfortability is diminishing in Guangdong Province. This study will provide scientific reference for regional urban planning, thermal environment improvement, local resident health risk analysis, and key strategy implementation, etc.


2022 ◽  
Vol 44 (1) ◽  
Author(s):  
Wan-Qi Chen ◽  
Xin-Yu Zhang

Abstract1,3-Butadiene (BD) is a petrochemical manufactured in high volumes. It is a human carcinogen and can induce lymphohematopoietic cancers, particularly leukemia, in occupationally-exposed workers. BD is an air pollutant with the major environmental sources being automobile exhaust and tobacco smoke. It is one of the major constituents and is considered the most carcinogenic compound in cigarette smoke. The BD concentrations in urban areas usually vary between 0.01 and 3.3 μg/m3 but can be significantly higher in some microenvironments. For BD exposure of the general population, microenvironments, particularly indoor microenvironments, are the primary determinant and environmental tobacco smoke is the main contributor. BD has high cancer risk and has been ranked the second or the third in the environmental pollutants monitored in most urban areas, with the cancer risks exceeding 10-5. Mutagenicity/carcinogenicity of BD is mediated by its genotoxic metabolites but the specific metabolite(s) responsible for the effects in humans have not been determined. BD can be bioactivated to yield three mutagenic epoxide metabolites by cytochrome P450 enzymes, or potentially be biotransformed into a mutagenic chlorohydrin by myeloperoxidase, a peroxidase almost specifically present in neutrophils and monocytes. Several urinary BD biomarkers have been developed, among which N-acetyl-S-(4-hydroxy-2-buten-1-yl)-L-cysteine is the most sensitive and is suitable for biomonitoring BD exposure in the general population. Exposure to BD has been associated with leukemia, cardiovascular disease, and possibly reproductive effects, and may be associated with several cancers, autism, and asthma in children. Collectively, BD is a ubiquitous pollutant that has been associated with a range of adverse health effects and diseases with children being a subpopulation with potentially greater susceptibility. Its adverse effects on human health may have been underestimated and more studies are needed.


2022 ◽  
Vol 19 (1) ◽  
Author(s):  
Lisa M. F. Janssen ◽  
Manosij Ghosh ◽  
Frauke Lemaire ◽  
K. Michael Pollard ◽  
Peter H. M. Hoet

Abstract Background Autoimmunity can result from the interplay between genetic background and effects of environmental and/or occupational exposure to hazardous materials. Several compounds, including silica dust, have been linked with systemic autoimmunity and systemic autoimmune diseases, based on epidemiological evidence. For asbestos, a strong link with systemic autoimmune diseases does not yet exist, however, several studies have documented features of autoimmunity following asbestos exposure. Even so, human studies are limited in their ability to identify and examine isolated exposures, making it difficult to demonstrate causation or to assess pathogenic mechanisms. Therefore, this systematic review examines the existing animal evidence regarding autoimmunity and exposure to silicates (silica and asbestos). Methods PubMed and EMBASE were systematically searched for peer-reviewed studies examining systemic autoimmune disease-related outcomes after silicate exposure in rodents. Literature databases were searched up to September 2021 for studies written in English and where the full text was available. Search strings were established based on a PECO (Population, Exposure, Comparator, Outcome) format. After title, abstract, and full-text screening, thirty-four studies were identified for further analysis. Quality assessment through ToxR tool and qualitative analysis of the results was performed. Results Although there was significant heterogeneity in the included studies in terms of exposure protocol and genetic background of the rodent models used, it was noted that both genetic background and exposure to silicates [(crystalline) silica and asbestos] are highly relevant to the development of (sub-) clinical systemic autoimmune disease. Conclusion Parallels were observed between the findings from the animal (this review) and human (epidemiological) studies, arguing that experimental animal models are valuable tools for examining exacerbation or development of autoimmune disease after silicate exposure. However, genetic background and synergism between exposures should be considered in future studies.


Author(s):  
Xuerong Sun ◽  
Fei Ge ◽  
Yi Fan ◽  
Shoupeng Zhu ◽  
Quanliang Chen

Abstract Temperature extremes have increased during the past several decades and are expected to intensify under current rapid global warming over Southeast Asia (SEA). Exposure to rising temperatures in highly vulnerable regions affects populations, ecosystems, and other elements that may suffer potential losses. Here, we evaluate changes in temperature extremes and future population exposure over SEA at global warming levels (GWLs) of 2.0 °C and 3.0 °C using outputs from the Coupled Model Intercomparison Project Phase 6 (CMIP6). Results indicate that temperature extreme indices are projected to increase over SEA at both GWLs, with more significant magnitudes at 3.0 °C. However, daily temperature ranges (DTR) show a decrease. The substantial increase in total SEA population exposure to heat extremes from 730 million person-days at 2.0 °C GWL to 1,200 million person-days at 3.0 °C GWL is mostly contributed by the climate change component, accounting for 48%. In addition, if the global warming is restricted well below 2.0 °C, the avoided impacts in population exposure are prominent for most regions over SEA with the largest mitigation in the Philippines (PH). Aggregate population exposure to impacts is decreased by approximately 39% at 2.0 °C GWL, while the interaction component effect, which is associated with increased population and climate change, would decrease by 53%. This indicates the serious consequences for growing populations concurrent with global warming impacts if the current fossil-fueled development pathway is adhered to. The present study estimates the risks of increased temperature extremes and population exposure in a warmer future, and further emphasizes the necessity and urgency of implementing climate adaptation and mitigation strategies in SEA.


2021 ◽  
Vol 1 ◽  
pp. 2090-2097
Author(s):  
Wahyu Agung Nugroho ◽  
Wiwiek Natalya

Abstract80% of the use og gadgets in Indonesia is dominated by teenagers. Teenagers can spend their time just playing with their gadgets. Meanwhile, research data show that 63% of adolescents have inadequate sleep quality. This study aimed to determine the correlation between gadget use and adolescent sleep quality using a literature review study. Using a literature review design with the PEO (population, exposure, outcame) method ang using five articles from Google Scholar, Pubmed, Proquest published in 2010-2021. It showed that most of the respondents were male (52.42%) and 13 years old (30,52%). On the use of gadgets, most respondents were in the category of low use or not addicted (71.97%). Most of the respondents also had good quality of sleep (75.30%). The five articles obtained a p-value less than 0,05. There is a correlation between the use of gadgets with adolescents sleep quality.Keywords: Adolescents; gadgets; sleep quality AbstrakPenggunaan gadget di Indonesia 80% didominasi oleh usia remaja. Remaja bisa menghabiskan waktunya hanya untuk bermain gadget. Sedangkan data penelitian menunjukkan 63% remaja memiliki kualitas tidur kurang terpenuhi. Penelitian ini bertujuan untuk mengetahui hubungan penggunaan gadget terhadap kualitas tidur remaja menggunakan studi literature review. Menggunakan desain literature review dengan menggunakan metode PEO (population, exposure, outcame) dan menggunakan 5 artikel dari database dengan penelusuran elektronik pada Google Scholar, PubMed, Proquest yang dipublikasikan pada tahun 2010-2021. Karakteristik responden dari kelima artikel didapatkan jumlah responden terbanyak berjenis kelamin laki-laki (52,42%), responden terbanyak berusia 13 tahun (30,52). Pad penggunaan gadget sebagian besar responden pada kategori penggunaan rendah atau tidak kecanduan (71,97%) dan pada kualitas tidur sebagian besar responden memiliki kualitas yang baik (75,30%). Kelima artikel diperoleh hasil p-value < 0,05. Terdapat hubungan antara penggunaan gadget dengan kualitas tidur remaja.Kata kunci: Gadget; kualitas tidur; remaja


Author(s):  
Chang Yan ◽  
Guangming Shi ◽  
Fumo Yang

Abstract Due to the heterogeneity of PM2.5 and population distribution, the representativeness of existing monitoring sites is questionable when the monitored data were used to assess the population exposure. By comparing the PM2.5 concentration from a satellite-based dataset named the China High Air Pollutants (CHAP), population and exposure level in urban areas with monitoring stations (UWS) and without monitoring stations (UNS), we discussed the rationality of the current spatial coverage of monitoring stations in eastern China. Through an analysis of air pollution in all urban areas of 256 prefectural-level municipalities in eastern China, we found that the average PM2.5 concentration in UNS in 2015 and 2018 were 52.26 μg/m3 and 41.32 μg/m3, respectively, which were slightly lower than that in UWS (52.98 μg/m3 and 41.48 μg/m3). About 12.1% of the prefectural-level municipalities had higher exposure levels in certain UNS than those in UWS. With the faster growth of UNS population, the gap between exposure levels of UNS and UWS were narrowing. Hence, currently prevalent administration-based principle of site location selection might have higher risk of missing the non-capital urban areas with relatively higher PM2.5 exposure level in the future.


2021 ◽  
Vol 14 (1) ◽  
pp. 96
Author(s):  
Xiao Xiao ◽  
Xiao Xie ◽  
Bingyu Zhao ◽  
Jingzhong Li ◽  
Bing Xue

In order to formulate policies to control regional air pollution and promote sustainable human–land system development, it is crucial to study the space–time distribution of air pollution and the population exposure risk. Existing studies are limited to individual fine particulate pollutants, which does not fully reflect the comprehensiveness of air quality. In addition, the spatiotemporal distribution of air quality and population exposure risk at different scales need to be further quantified. In this study, we used air monitoring station data and population spatial distribution data to analyze the spatiotemporal characteristics of air quality, including seasonal variations, variations before and during heating periods, and the occurrence frequency of priority pollutants in the traditional industrial areas of Northeast China in 2015. The population exposure–air pollution risk (PE-APR) model was used to calculate the population exposure risk at different spatial scales. The results suggest that GIS methods and air monitoring data help to establish a comprehensive air quality analysis framework, revealing spring–summer differentiation and the change trend of air quality with latitude. There are significant clustering features of air quality. A grid-scale population exposure–air pollution risk map is not restricted by administrative boundaries, which helps to discover high-risk areas of the main regional economic corridors and differences between inner cities and suburbs. This study provides a reference for understanding the space–time evolution of regional air pollution and formulating coordinated cross-regional air pollution strategies.


Author(s):  
Faye Koenigsmark ◽  
Caren Weinhouse ◽  
Axel Berky ◽  
Ana Morales ◽  
Ernesto Ortiz ◽  
...  

Total mercury content (THg) in hair is an accepted biomarker for chronic dietary methylmercury (MeHg) exposure. In artisanal and small-scale gold mining (ASGM) communities, the validity of this biomarker is questioned because of the potential for contamination from inorganic mercury. As mining communities may have both inorganic and organic mercury exposures, the efficacy of the hair-THg biomarker needs to be evaluated, particularly as nations begin population exposure assessments under their commitments to the Minamata Convention. We sought to validate the efficacy of hair THg for public health monitoring of MeHg exposures for populations living in ASGM communities. We quantified both THg and MeHg contents in hair from a representative subset of participants (N = 287) in a large, population-level mercury exposure assessment in the ASGM region in Madre de Dios (MDD), Peru. We compared population MeHg-THg correlations and %MeHg values with demographic variables including community location, sex, occupation, and nativity. We observed that hair MeHg-THg correlations were high (r > 0.7) for all communities, regardless of location or nativity. Specifically, for individuals within ASGM communities, 81% (121 of 150 total) had hair THg predominantly in the form of MeHg (i.e., >66% of THg) and reflective of dietary exposure to mercury. Furthermore, for individuals with hair THg exceeding the U.S. EPA threshold (1.0 μg/g), 88 out of 106 (83%) had MeHg as the predominant form. As a result, had urine THg solely been used for mercury exposure monitoring, approximately 59% of the ASGM population would have been misclassified as having low mercury exposure. Our results support the use of hair THg for monitoring of MeHg exposure of populations in ASGM settings where alternative biomarkers of MeHg exposure are not feasible.


2021 ◽  
Vol 126 ◽  
Author(s):  
Rickard Ljung ◽  
Anders Sundström ◽  
Maria Grünewald ◽  
Charlotte Backman ◽  
Nils Feltelius ◽  
...  

Background: The coronavirus disease 2019 (COVID-19) vaccines have been rapidly implemented in national vaccination programs world-wide after accelerated approval processes. The large population exposure achieved in very short time requires systematic monitoring of safety. The Swedish Medical Products Agency has launched a project platform for epidemiological surveillance to detect and characterise suspected adverse effects of COVID-19 vaccines in Sweden. Methods: The platform includes all individuals 12 years or older in Sweden in 2021 and will be updated annually. Data, including vaccine and COVID-19 disease data, socioeconomic and demographic data, comorbidity, prescribed medicines and healthcare utilisation outcomes, are obtained from several national registers in collaboration with other Swedish Government agencies. Data from 2015 to 2019 are used as a historical comparison cohort unexposed to both the COVID-19 pandemic and to the COVID-19 vaccines. Results: The primary study cohort includes 8,305,978 adults 18 years and older permanently residing in Sweden on 31 December 2020. The historical control cohort includes 8,679,641 subjects. By 31 July 2021, around 50% of those 18 years and older and two-thirds of those 50 years and older were vaccinated with at least one dose, 90% of those 70 years or older had two doses. Conclusions: The nationwide register-based study cohort created by the Swedish Medical Products Agency with regular updates of individual level linkage of COVID-19 vaccination exposure data to other health data registers will facilitate both safety signal detection and evaluation and other pharmacoepidemiological studies.


Sign in / Sign up

Export Citation Format

Share Document