Investigation of the mixing layer height derived from ceilometer measurements in the Kathmandu Valley and implications for local air quality By Andrea Mues et al.

2017 ◽  
Author(s):  
Anonymous
2015 ◽  
Vol 20 (1) ◽  
pp. 28-35
Author(s):  
Sajan Shrestha ◽  
Saraswati Shrestha ◽  
Sangeeta Maharjan ◽  
Ram P. Regmi

The characteristic behavior of prevailing boundary layer over the central area of the Kathmandu valley was continuously monitored by deploying a monostatic flat array sodar during the period of 03 to 16 March 2013. Diurnal variation of wind and mixing layer height were chosen to describe the boundary layer activities over the area by considering the day of 12 March 2013 as the representative day for the period of observation. The study shows that central area of the valley remains calm or windless under stable stratification throughout the night and early morning frequently capped by northeasterly or easterly wind aloft. Strong surface level thermal inversion prevails during the period up to the height of 80m above the surface. This inversion tends to lift up as the morning progresses and reaches to the height of 875 m or so close to the noontime. Intrusion of regional winds as westerly/northwesterly and the southerly/southwesterly from the western and southwestern low-mountain passes and the river gorge in the afternoon tends to reduce the noontime mixing layer height to about 700 m. The diurnal variation of wind and mixing layer height suggest that Kathmandu valley possesses a poor air pollution dispersion power and hence the valley is predisposed to high air pollution potential.Journal of Institute of Science and Technology, 2015, 20(1): 28-35


2010 ◽  
Author(s):  
Klaus Schäfer ◽  
Costas Helmis ◽  
Stefan Emeis ◽  
George Sgouros ◽  
Ralf Kurtenbach ◽  
...  

2017 ◽  
Author(s):  
Andrea Mues ◽  
Maheswar Rupakheti ◽  
Christoph Münkel ◽  
Axel Lauer ◽  
Heiko Bozem ◽  
...  

Abstract. In this study one year of ceilometer measurements taken in the Kathmandu Valley, Nepal, in the framework of the SusKat project (A Sustainable Atmosphere for the Kathmandu Valley) were analyzed to investigate the diurnal variation of the mixing layer height and its dependency on the meteorological conditions. In addition, the impact of the mixing layer height on the temporal variation and the magnitude of the measured black carbon concentrations are analysed for each season. Based on the assumption that black carbon aerosols are vertically well mixed within the mixing layer and the finding that the mixing layer varies only little during night time and morning hours, black carbon emission fluxes are estimated for these hours and per month. Even though this method is relatively simple, it can give an observationally based first estimate of the black carbon emissions in this region, especially illuminating the seasonal cycle of the emission fluxes. In all seasons the diurnal cycle of the mixing layer height is typically characterized by low heights during the night and maximum values during in the afternoon. Seasonal differences are found in the absolute mixing layer height values and the duration of the typical daytime maximum. During the monsoon season a diurnal cycle has been observed with the smallest amplitude, with the lowest daytime mixing height of all seasons, and also the highest nighttime and early morning mixing height of all seasons. These characteristics can mainly be explained with the frequently present clouds and the associated reduction in incoming solar radiation and outgoing longwave radiation. In general, the black carbon concentrations show a clear anticorrelation with mixing layer height measurements, although this relation is less pronounced in the monsoon season. The daily evolution of the black carbon diurnal cycle differs between the seasons, partly due to the different meteorological conditions including the mixing layer height. Other important reasons are the different main emission sources and their diurnal variations in the individual seasons. The estimation of the black carbon emission flux for the morning hours show a clear seasonal cycle with maximum values in December to April. Compared to the emission flux values provided by different emission databases for this region, the here estimated values are considerably higher. Several possible sources of uncertainty are considered, and even the absolute lower bound of the emissions based on our methodology is higher than in most emissions datasets, providing strong evidence that the black carbon emissions for this region have likely been underestimated in modelling studies thus far.


2020 ◽  
Vol 197 ◽  
pp. 105157 ◽  
Author(s):  
B.S. Murthy ◽  
R. Latha ◽  
Arpit Tiwari ◽  
Aditi Rathod ◽  
Siddhartha Singh ◽  
...  

2018 ◽  
Vol 18 (19) ◽  
pp. 14113-14132 ◽  
Author(s):  
Khadak Singh Mahata ◽  
Maheswar Rupakheti ◽  
Arnico Kumar Panday ◽  
Piyush Bhardwaj ◽  
Manish Naja ◽  
...  

Abstract. Residents of the Kathmandu Valley experience severe particulate and gaseous air pollution throughout most of the year, even during much of the rainy season. The knowledge base for understanding the air pollution in the Kathmandu Valley was previously very limited but is improving rapidly due to several field measurement studies conducted in the last few years. Thus far, most analyses of observations in the Kathmandu Valley have been limited to short periods of time at single locations. This study extends the past studies by examining the spatial and temporal characteristics of two important gaseous air pollutants (CO and O3) based on simultaneous observations over a longer period at five locations within the valley and on its rim, including a supersite (at Bode in the valley center, 1345 m above sea level) and four satellite sites: Paknajol (1380 m a.s.l.) in the Kathmandu city center; Bhimdhunga (1522 m a.s.l.), a mountain pass on the valley's western rim; Nagarkot (1901 m a.s.l.), another mountain pass on the eastern rim; and Naikhandi (1233 m a.s.l.), near the valley's only river outlet. CO and O3 mixing ratios were monitored from January to July 2013, along with other gases and aerosol particles by instruments deployed at the Bode supersite during the international air pollution measurement campaign SusKat-ABC (Sustainable Atmosphere for the Kathmandu Valley – endorsed by the Atmospheric Brown Clouds program of UNEP). The monitoring of O3 at Bode, Paknajol and Nagarkot as well as the CO monitoring at Bode were extended until March 2014 to investigate their variability over a complete annual cycle. Higher CO mixing ratios were found at Bode than at the outskirt sites (Bhimdhunga, Naikhandi and Nagarkot), and all sites except Nagarkot showed distinct diurnal cycles of CO mixing ratio, with morning peaks and daytime lows. Seasonally, CO was higher during premonsoon (March–May) season and winter (December–February) season than during monsoon season (June–September) and postmonsoon (October–November) season. This is primarily due to the emissions from brick industries, which are only operational during this period (January–April), as well as increased domestic heating during winter, and regional forest fires and agro-residue burning during the premonsoon season. It was lower during the monsoon due to rainfall, which reduces open burning activities within the valley and in the surrounding regions and thus reduces sources of CO. The meteorology of the valley also played a key role in determining the CO mixing ratios. The wind is calm and easterly in the shallow mixing layer, with a mixing layer height (MLH) of about 250 m, during the night and early morning. The MLH slowly increases after sunrise and decreases in the afternoon. As a result, the westerly wind becomes active and reduces the mixing ratio during the daytime. Furthermore, there was evidence of an increase in the O3 mixing ratios in the Kathmandu Valley as a result of emissions in the Indo-Gangetic Plain (IGP) region, particularly from biomass burning including agro-residue burning. A top-down estimate of the CO emission flux was made by using the CO mixing ratio and mixing layer height measured at Bode. The estimated annual CO flux at Bode was 4.9 µg m−2 s−1, which is 2–14 times higher than that in widely used emission inventory databases (EDGAR HTAP, REAS and INTEX-B). This difference in CO flux between Bode and other emission databases likely arises from large uncertainties in both the top-down and bottom-up approaches to estimating the emission flux. The O3 mixing ratio was found to be highest during the premonsoon season at all sites, while the timing of the seasonal minimum varied across the sites. The daily maximum 8 h average O3 exceeded the WHO recommended guideline of 50 ppb on more days at the hilltop station of Nagarkot (159 out of 357 days) than at the urban valley bottom sites of Paknajol (132 out of 354 days) and Bode (102 out of 353 days), presumably due to the influence of free-tropospheric air at the high-altitude site (as also indicated by Putero et al., 2015, for the Paknajol site in the Kathmandu Valley) as well as to titration of O3 by fresh NOx emissions near the urban sites. More than 78 % of the exceedance days were during the premonsoon period at all sites. The high O3 mixing ratio observed during the premonsoon period  is of a concern for human health and ecosystems, including agroecosystems in the Kathmandu Valley and surrounding regions.


2017 ◽  
Author(s):  
Alexander Geiß ◽  
Matthias Wiegner ◽  
Boris Bonn ◽  
Klaus Schäfer ◽  
Renate Forkel ◽  
...  

Abstract. The mixing layer height (MLH) is a measure for the vertical turbulent exchange within the boundary layer, which is one of the controlling factors for the dilution of pollutants emitted near the ground. Based on continuous MLH measurements with a Vaisala CL51 ceilometer and measurements from an air quality network, the relationship between MLH and near surface pollutant concentrations have been investigated. In this context the uncertainty of the MLH retrievals and the representativeness of ground-based in-situ measurements are crucial. We have investigated this topic by using data from the BAERLIN2014 campaign in Berlin, Germany, conducted during June and August 2014. To derive the MLH three versions of the proprietary software BL-VIEW and a novel approach COBOLT were compared. It was found that the overall agreement is reasonable if mean diurnal cycles are considered. The main advantage of COBOLT is the continuous detection of the MLH with a temporal resolution of 10 minutes and a lower number of cases when the residual layer is misinterpreted as mixing layer. We have calculated correlations between MLH as derived from the different retrievals and concentrations of pollutants (PM10, O3 and NOx) for different locations in the metropolitan area of Berlin. It was found that the correlations with PM10 are quite different for different sites without showing a clear pattern, whereas the correlation with NOx seems to depend on the vicinity of emission sources in main roads. In case of ozone as a secondary pollutant a clear correlation was found. We conclude that the effects of the heterogeneity of the emission sources, chemical processing and mixing during transport exceed the differences due to different MLH retrievals. Moreover, it seems to be unrealistic to find correlations between MLH and near surface pollutant concentrations representative for a city like Berlin, in particular when traffic emissions are dominant. Nevertheless it is worthwhile to use advanced MLH retrievals for ceilometer data, e.g. for the validation of chemical transport models.


2015 ◽  
Vol 20 (2) ◽  
pp. 22-30 ◽  
Author(s):  
Saraswati Shrestha ◽  
Sajan Shrestha ◽  
Sangeeta Maharjan ◽  
Ram P. Regmi

The early monsoon time boundary layer characteristics prevailing over Aindanda low-mountain pass of Kathmandu valley has been continuously monitored for the period of 11 to 24 June 2013. The study reveals that the Aindanda pass channels regional air masses from the western neighboring valley up into the Kathmandu valley as westerly/ northwesterly winds during the daytime whereas it drains air mass out of the valley during night-time. The speed of the westerly/northwesterly wind over the pass often exceeds 6.5 ms-1 during the late afternoon. Nighttime mixing layer height (MLH) was highly fluctuating with an average around 300m whereas daytime MLH was suppressed limiting it in between 290-450m above the ground in early part of the day but reduced to 210-270m during the late afternoon. Comparison of diurnal variation of mixing layer height at Aindanda with that of the central area of the valley floor strongly suggests that air mass intruding into the Kathmandu valley through this pass is a cool density flow over the weakly stratified mixed layer of valley. The structure of the wind channeled through this pass indicates the possibility of making hydraulic jump in the western part of the Kathmandu valley, particularly, during the late afternoon time.Journal of Institute of Science and Technology, 2015, 20(2): 22-30


2017 ◽  
Vol 10 (8) ◽  
pp. 2969-2988 ◽  
Author(s):  
Alexander Geiß ◽  
Matthias Wiegner ◽  
Boris Bonn ◽  
Klaus Schäfer ◽  
Renate Forkel ◽  
...  

Abstract. The mixing layer height (MLH) is a measure for the vertical turbulent exchange within the boundary layer, which is one of the controlling factors for the dilution of pollutants emitted near the ground. Based on continuous MLH measurements with a Vaisala CL51 ceilometer and measurements from an air quality network, the relationship between MLH and near-surface pollutant concentrations has been investigated. In this context the uncertainty of the MLH retrievals and the representativeness of ground-based in situ measurements are crucial. We have investigated this topic by using data from the BAERLIN2014 campaign in Berlin, Germany, conducted from June to August 2014. To derive the MLH, three versions of the proprietary software BL-VIEW and a novel approach COBOLT were compared. It was found that the overall agreement is reasonable if mean diurnal cycles are considered. The main advantage of COBOLT is the continuous detection of the MLH with a temporal resolution of 10 min and a lower number of cases when the residual layer is misinterpreted as mixing layer. We have calculated correlations between MLH as derived from the different retrievals and concentrations of pollutants (PM10, O3 and NOx) for different locations in the metropolitan area of Berlin. It was found that the correlations with PM10 are quite different for different sites without showing a clear pattern, whereas the correlation with NOx seems to depend on the vicinity of emission sources in main roads. In the case of ozone as a secondary pollutant, a clear correlation was found. We conclude that the effects of the heterogeneity of the emission sources, chemical processing and mixing during transport exceed the differences due to different MLH retrievals. Moreover, it seems to be unrealistic to find correlations between MLH and near-surface pollutant concentrations representative for a city like Berlin (flat terrain), in particular when traffic emissions are dominant. Nevertheless it is worthwhile to use advanced MLH retrievals for ceilometer data, for example as input to dispersion models and for the validation of chemical transport models.


Sign in / Sign up

Export Citation Format

Share Document