scholarly journals Supplementary material to "Connecting smoke plumes to sources using Hazard Mapping System (HMS) smoke and fire location data over North America"

Author(s):  
Steven J. Brey ◽  
Mark Ruminski ◽  
Samuel A. Atwood ◽  
Emily V. Fischer
2018 ◽  
Vol 18 (3) ◽  
pp. 1745-1761 ◽  
Author(s):  
Steven J. Brey ◽  
Mark Ruminski ◽  
Samuel A. Atwood ◽  
Emily V. Fischer

Abstract. Fires represent an air quality challenge because they are large, dynamic and transient sources of particulate matter and ozone precursors. Transported smoke can deteriorate air quality over large regions. Fire severity and frequency are likely to increase in the future, exacerbating an existing problem. Using the National Environmental Satellite, Data, and Information Service (NESDIS) Hazard Mapping System (HMS) smoke data for North America for the period 2007 to 2014, we examine a subset of fires that are confirmed to have produced sufficient smoke to warrant the initiation of a U.S. National Weather Service smoke forecast. We find that gridded HMS-analyzed fires are well correlated (r= 0.84) with emissions from the Global Fire Emissions Inventory Database 4s (GFED4s). We define a new metric, smoke hours, by linking observed smoke plumes to active fires using ensembles of forward trajectories. This work shows that the Southwest, Northwest, and Northwest Territories initiate the most air quality forecasts and produce more smoke than any other North American region by measure of the number of HYSPLIT points analyzed, the duration of those HYSPLIT points, and the total number of smoke hours produced. The average number of days with smoke plumes overhead is largest over the north-central United States. Only Alaska, the Northwest, the Southwest, and Southeast United States regions produce the majority of smoke plumes observed over their own borders. This work moves a new dataset from a daily operational setting to a research context, and it demonstrates how changes to the frequency or intensity of fires in the western United States could impact other regions.


2017 ◽  
Author(s):  
Emily V. Fischer ◽  
Liye Zhu ◽  
Vivienne H. Payne ◽  
John R. Worden ◽  
Zhe Jiang ◽  
...  

Abstract. Peroxyacetyl nitrate (PAN) is a critical atmospheric reservoir for nitrogen oxide radicals, and it plays a lead role in their redistribution in the troposphere. We analyze new Tropospheric Emission Spectrometer (TES) PAN observations over North America during July 2006 to 2009. Using aircraft observations from the Colorado Front Range, we demonstrate that TES can be sensitive to elevated PAN in the boundary layer even in the presence of clouds. In situ observations have shown that wildfire emissions can rapidly produce PAN, and PAN decomposition is an important component of ozone production in smoke plumes. We identify smoke-impacted TES PAN retrievals by co-location with NOAA Hazard Mapping System (HMS) smoke plumes. We find that 15–32 % of cases where elevated PAN is identified in TES observations (retrievals with DOF > 0.6) overlap smoke plumes. A case study of smoke transport in July 2007 illustrates that PAN enhancements associated with HMS smoke plumes can be connected to fire complexes, providing evidence that TES is sufficiently sensitive to measure elevated PAN several days downwind of major fires. Using a subset of retrievals with TES 510 hPa carbon monoxide (CO) > 150 ppbv, and multiple estimates of background PAN, we calculate enhancement ratios for tropospheric average PAN relative to CO in smoke-impacted retrievals. Most of the TES-based enhancement ratios fall within the range calculated from in situ measurements.


2017 ◽  
Author(s):  
Steven J. Brey ◽  
Mark Ruminski ◽  
Samuel A. Atwood ◽  
Emily V. Fischer

Abstract. Fires represent an air quality challenge because they are large, dynamic and transient sources of particulate matter and ozone precursors. Transported smoke can deteriorate air quality over large regions. Fire severity and frequency are likely to increase in the future, exacerbating an existing problem. Using the National Environmental Satellite, Data and Information Service (NESDIS) Hazard Mapping System (HMS) smoke data for North America for the period 2007 to 2014, we examine a subset of fires that are confirmed to have produced sufficient smoke to warrant the initiation of a U.S. National Weather Service smoke forecast. We find that gridded HMS analyzed fires are well correlated (r = 0.84) with emissions from the Global Fire Emissions Inventory Database 4s (GFED4s). We define a new metric, smoke hours, by linking observed smoke plumes to active fires using ensembles of forward trajectories. This work shows that the Southwest, Northwest, and Northwest Territories trigger the most air quality forecasts, and produce more smoke than any other North American region by measure of the number of HYSPIT points analyzed, the duration of those HYSPLIT points, and the total number of smoke hours produced. The average number of days with smoke plumes overhead is largest over the north-central U.S. Only Alaska, the Northwest, the Southwest, and Southeast U.S. regions produce the majority of smoke plumes observed over their own borders. This work moves a new dataset from a daily operational setting to a research context, and it demonstrates how changes to the frequency or intensity of fires in the western U.S. could impact other regions.


2018 ◽  
Vol 18 (8) ◽  
pp. 5639-5653 ◽  
Author(s):  
Emily V. Fischer ◽  
Liye Zhu ◽  
Vivienne H. Payne ◽  
John R. Worden ◽  
Zhe Jiang ◽  
...  

Abstract. Peroxyacyl nitrate (PAN) is a critical atmospheric reservoir for nitrogen oxide radicals, and plays a lead role in their redistribution in the troposphere. We analyze new Tropospheric Emission Spectrometer (TES) PAN observations over North America from July 2006 to July 2009. Using aircraft observations from the Colorado Front Range, we demonstrate that TES can be sensitive to elevated PAN in the boundary layer (∼ 750 hPa) even in the presence of clouds. In situ observations have shown that wildfire emissions can rapidly produce PAN, and PAN decomposition is an important component of ozone production in smoke plumes. We identify smoke-impacted TES PAN retrievals by co-location with NOAA Hazard Mapping System (HMS) smoke plumes. Depending on the year, 15–32 % of cases where elevated PAN is identified in TES observations (retrievals with degrees of freedom (DOF) > 0.6) overlap smoke plumes during July. Of all the retrievals attempted in the July 2006 to July 2009 study period, 18 % is associated with smoke . A case study of smoke transport in July 2007 illustrates that PAN enhancements associated with HMS smoke plumes can be connected to fire complexes, providing evidence that TES is sufficiently sensitive to measure elevated PAN several days downwind of major fires. Using a subset of retrievals with TES 510 hPa carbon monoxide (CO) > 150 ppbv, and multiple estimates of background PAN, we calculate enhancement ratios for tropospheric average PAN relative to CO in smoke-impacted retrievals. Most of the TES-based enhancement ratios fall within the range calculated from in situ measurements.


2016 ◽  
Vol 57 (4) ◽  
pp. 261-267 ◽  
Author(s):  
Takuya URAKOSHI ◽  
Takaaki FUKUHARA ◽  
Osamu NUNOKAWA ◽  
Atsushi HASEGAWA

2019 ◽  
Vol 19 (5) ◽  
pp. 3341-3356 ◽  
Author(s):  
Vladimir V. Zuev ◽  
Vladislav V. Gerasimov ◽  
Aleksei V. Nevzorov ◽  
Ekaterina S. Savelieva

Abstract. Large volcanic eruptions with the volcanic explosivity index (VEI) ≥ 3 are widely known to be the strongest source of long-lived aerosol in the upper troposphere and lower stratosphere (UTLS). However, the latest studies have revealed that massive forest (bush) fires represent another strong source of short-term (but intense) aerosol perturbations in the UTLS if combustion products from the fires reach these altitudes via convective ascent within pyrocumulonimbus clouds (pyroCbs). PyroCbs, generated by boreal wildfires in North America and northeastern Asia and injecting smoke plumes into the UTLS, have been intensively studied using both ground- and space-based instruments since the beginning of the 21st century. In this paper, we focus on aerosol layers observed in the UTLS over Tomsk (56.48∘ N, 85.05∘ E, Western Siberia, Russia) that could be smoke plumes from such pyroCb events occurring in the 2000–2017 period. Using the HYSPLIT trajectory analysis, we have reliably assigned nine aerosol layers to 8 out of more than 100 documented pyroCb events, the aftereffects of which could potentially be detected in the UTLS over Tomsk. All the eight pyroCb events occurred in the USA and Canada: one event per year occurred in 2000, 2002, 2003, 2013, 2015, and 2016, whereas two events occurred in 2017. No plumes from pyroCbs originating in the boreal zone of Siberia and the Far East (to the east of Tomsk) were observed in the UTLS over Tomsk between 2000 and 2017. We conclude that the time durations for pyroCb plumes to be detected in the UTLS using ground-based lidars are less than about a month, i.e., plumes from pyroCbs generated by wildfires to the east of Tomsk can significantly diffuse before reaching the Tomsk lidar station by the westerly zonal transport of air masses. A comparative analysis of the contributions from pyroCb events and volcanic eruptions with VEI ≥ 3 to aerosol loading of the UTLS over Tomsk showed the following. Plumes from two or more pyroCbs that have occurred in North America in a single year are able to markedly increase the aerosol loading compared to the previous year. The annual average value of the integrated aerosol backscatter coefficient Bπ,532a increased by 14.8 % in 2017 compared to that in 2016 due to multiple pyroCbs occurring in British Columbia (Canada) in August 2017. The aftereffects of pyroCb events are comparable to those of volcanic eruptions with VEI ≤ 3, but even multiple pyroCbs can hardly compete with volcanic eruptions with VEI = 4.


2009 ◽  
Vol 1 (4) ◽  
Author(s):  
Ahmad Mahmud ◽  
Iwan Setiawan ◽  
Shattri Mansor ◽  
Abdul Shariff ◽  
Biswajeet Pradhan ◽  
...  

AbstractA study in modeling fire hazard assessment will be essential in establishing an effective forest fire management system especially in controlling and preventing peat fire. In this paper, we have used geographic information system (GIS), in combination with other geoinformation technologies such as remote sensing and computer modeling, for all aspects of wild land fire management. Identifying areas that have a high probability of burning is an important component of fire management planning. The development of spatially explicit GIS models has greatly facilitated this process by allowing managers to map and analyze variables contributing to fire occurrence across large, unique geographic units. Using the model and its associated software engine, the fire hazard map was produced. Extensive avenue programming scripts were written to provide additional capabilities in the development of these interfaces to meet the full complement of operational software considering various users requirements. The system developed not only possesses user friendly step by step operations to deliver the fire vulnerability mapping but also allows authorized users to edit, add or modify parameters whenever necessary. Results from the model can support fire hazard mapping in the forest and enhance alert system function by simulating and visualizing forest fire and helps for contingency planning.


Sign in / Sign up

Export Citation Format

Share Document