scholarly journals New particle formation, growth and shrinkage at a rural background site in western Saudi Arabia

2019 ◽  
Author(s):  
Simo Hakala ◽  
Mansour A. Alghamdi ◽  
Pauli Paasonen ◽  
Mamdouh Khoder ◽  
Kimmo Neitola ◽  
...  

Abstract. Atmospheric aerosols have significant effects on human health and the climate. A large fraction of these aerosols originates from secondary new particle formation (NPF), where atmospheric vapors form small particles that subsequently grow into larger sizes. In this study, we characterize NPF events observed at a rural background site of Hada Al Sham (21.802° N, 39.729° E), located in western Saudi-Arabia, during the years 2013–2015. Our analysis shows that NPF events occur very frequently at the site, as 73 % of all the 454 classified days were NPF days. The high NPF frequency is likely 20 explained by the typically prevailing conditions of clear skies and high solar radiation, in combination with sufficient amounts of precursor vapors for particle formation and growth. In Hada Al Sham, the precursor vapors seem to be related to the transport of anthropogenic emissions from the coastal urban and industrial areas, since no NPF events are observed in air masses coming from the sparsely inhabited inland. The median particle formation and growth rates for the NPF days were 8.7 cm−3 s−1 (J7nm) and 7.4 nm h−1 (GR7–12nm), respectively, both showing highest values during late summer. In addition, the 25 formation and growth rates increase as a function of the condensation sink, likely reflecting the common anthropogenic sources of large primary particles and NPF precursor vapors. 76 % of the NPF days showed an unusual progression, where the observed diameter of the newly formed particle mode started to decrease after the growth phase. In comparison to most long-term measurements, the NPF events in Hada Al Sham are exceptionally frequent and strong. In addition, the frequency of the decreasing mode diameter events is higher than anywhere else in the world.

2019 ◽  
Vol 19 (16) ◽  
pp. 10537-10555 ◽  
Author(s):  
Simo Hakala ◽  
Mansour A. Alghamdi ◽  
Pauli Paasonen ◽  
Ville Vakkari ◽  
Mamdouh I. Khoder ◽  
...  

Abstract. Atmospheric aerosols have significant effects on human health and the climate. A large fraction of these aerosols originates from secondary new particle formation (NPF), where atmospheric vapors form small particles that subsequently grow into larger sizes. In this study, we characterize NPF events observed at a rural background site of Hada Al Sham (21.802∘ N, 39.729∘ E), located in western Saudi Arabia, during the years 2013–2015. Our analysis shows that NPF events occur very frequently at the site, as 73 % of all the 454 classified days were NPF days. The high NPF frequency is likely explained by the typically prevailing conditions of clear skies and high solar radiation, in combination with sufficient amounts of precursor vapors for particle formation and growth. Several factors suggest that in Hada Al Sham these precursor vapors are related to the transport of anthropogenic emissions from the coastal urban and industrial areas. The median particle formation and growth rates for the NPF days were 8.7 cm−3 s−1 (J7 nm) and 7.4 nm h−1 (GR7−12 nm), respectively, both showing highest values during late summer. Interestingly, the formation and growth rates increase as a function of the condensation sink, likely reflecting the common anthropogenic sources of NPF precursor vapors and primary particles affecting the condensation sink. A total of 76 % of the NPF days showed an unusual progression, where the observed diameter of the newly formed particle mode started to decrease after the growth phase. In comparison to most long-term measurements, the NPF events in Hada Al Sham are exceptionally frequent and strong both in terms of formation and growth rates. In addition, the frequency of the decreasing mode diameter events is higher than anywhere else in the world.


2011 ◽  
Vol 11 (4) ◽  
pp. 13193-13228 ◽  
Author(s):  
K. Neitola ◽  
E. Asmi ◽  
M. Komppula ◽  
A.-P. Hyvärinen ◽  
T. Raatikainen ◽  
...  

Abstract. A fraction of the Himalayan aerosols originate from secondary sources, which are currently poorly quantified. To clarify the climatic importance of regional secondary particle formation at Himalayas, data from 2005 to 2010 of continuous aerosol measurements at a high-altitude (2180 m) Indian Himalayan site, Mukteshwar, were analyzed. For this period, the days were classified, and the particle formation and growth rates were calculated for clear new particle formation (NPF) event days. The NPF events showed a pronounced seasonal cycle. The frequency of the events peaked in spring, when the ratio between event and non-event days was 53 %, whereas the events were truly sporadic on any other seasons. The annual mean particle formation and growth rates were 0.40 cm−3 s−1 and 2.43 nm h−1, respectively. The clear annual cycle was found to be mainly controlled by the seasonal evolution of the Planetary Boundary Layer (PBL) height together with local meteorological conditions. Spring NPF events were connected with increased PBL height, and therefore characterised as boundary layer events, while the rare events in other seasons represented lower free tropospheric particle formation.


2006 ◽  
Vol 6 (5) ◽  
pp. 10837-10882 ◽  
Author(s):  
I. Riipinen ◽  
S.-L. Sihto ◽  
M. Kulmala ◽  
F. Arnold ◽  
M. Dal Maso ◽  
...  

Abstract. This study investigates the connections between atmospheric sulphuric acid and new particle formation during QUEST III and BACCI/QUEST IV campaigns. The campaigns have been conducted in Heidelberg (2004) and Hyytiälä (2005), the first representing a polluted site surrounded by deciduous forest, and the second a rural site in a boreal forest environment. We have studied the role of sulphuric acid in particle formation and growth by determining 1) the power-law dependencies between sulphuric acid ([H2SO4]), and particle concentrations (N3–6) or formation rates at 1 nm and 3 nm (J1 and J3; 2) the time delays between [H2SO4] and N3–6 or J3, and the growth rates for 1–3 nm particles; 3) the empirical nucleation coefficients A and K in relations J1=A[H2SO4] and J1=K[H2SO4]2, respectively; 4) theoretical predictions for J1 and J3 for the days when no significant particle formation is observed, based on the observed sulphuric acid concentrations and condensation sinks. In both environments, N3–6 or J3 and [H2SO4] were linked via a power-law relation with exponents typically ranging from 1 to 2. The result suggests that the cluster activation theory and kinetic nucleation have the potential to explain the observed particle formation. However, some differences between the sites existed: The 1–3 nm growth rates were slightly higher and the nucleation coefficients about an order of magnitude greater in Heidelberg than in Hyytiälä conditions. The time lags between J3 and [H2SO4] were consistently lower than the corresponding delays between N3–6 and [H2SO4]. The exponents in the J3∝[H2SO4]nJ3-connection were consistently higher than or equal to the exponents in the relation N3–6∝[H2SO4]nN36. In the J1 values, no significant differences were found between the observed rates on particle formation event days and the predictions on non-event days. The J3 values predicted by the cluster activation or kinetic nucleation hypotheses, on the other hand, were considerably lower on non-event days than the rates observed on particle formation event days. This study provides clear evidence implying that the main process limiting the observable particle formation is the competition between the growth of the freshly formed particles and their loss by scavenging, rather than the initial particle production by nucleation of sulphuric acid. In general, it can be concluded that the simple models based on sulphuric acid concentrations and particle formation by cluster activation or kinetic nucleation can predict the occurence of atmospheric particle formation and growth well, if the particle scavenging is accurately accounted for.


2009 ◽  
Vol 9 (12) ◽  
pp. 4077-4089 ◽  
Author(s):  
H. E. Manninen ◽  
T. Nieminen ◽  
I. Riipinen ◽  
T. Yli-Juuti ◽  
S. Gagné ◽  
...  

Abstract. Despite the fact that frequent aerosol formation has been observed in various locations in the atmosphere, the overall magnitude of the new particle formation as a particle source is still unclear. In order to understand the particle formation and growth processes, we investigate the magnitudes of the particle formation and growth rates at the size where the real atmospheric nucleation and activation occurs. The relative contribution of neutral and charged particles to the new particle formation rate is also studied. The data include particle and ion number size distributions and total particle concentration measurements at a boreal forest site in Hyytiälä, Finland, during the spring 2007 EUCAARI field campaign. The total and charged particle formation rates differed from each other by approximately an order of magnitude. The median formation rates of 2 nm total and charged particles were 0.65 cm−3 s−1 and 0.03 cm−3 s−1, respectively. The median growth rates of particles in size classes 1.3–3, 3–7 and 7–20 nm were 1.9, 3.6 and 4.2 nm h−1, respectively. The calculated ion-ion recombination rates were about the same order of magnitude as the ion-induced formation rates. The results indicate that the ion-induced nucleation involving the ion-ion recombination products, i.e. ion mediated nucleation, contributes approximately 10% to the boreal forest new particle formation events.


2011 ◽  
Vol 11 (7) ◽  
pp. 3333-3346 ◽  
Author(s):  
V. Vakkari ◽  
H. Laakso ◽  
M. Kulmala ◽  
A. Laaksonen ◽  
D. Mabaso ◽  
...  

Abstract. This study is based on 18 months (20 July 2006–5 February 2008) of continuous measurements of aerosol particle size distributions, air ion size distributions, trace gas concentrations and basic meteorology in a semi-clean savannah environment in Republic of South Africa. New particle formation and growth was observed on 69% of the days and bursts of non-growing ions/sub-10 nm particles on additional 14% of the days. This new particle formation frequency is the highest reported from boundary layer so far. Also the new particle formation and growth rates were among the highest reported in the literature for continental boundary layer locations; median 10 nm formation rate was 2.2 cm−3 s−1 and median 10–30 nm growth rate 8.9 nm h−1. The median 2 nm ion formation rate was 0.5 cm−3 s−1 and the median ion growth rates were 6.2, 8.0 and 8.1 nm h−1 for size ranges 1.5–3 nm, 3–7 nm and 7–20 nm, respectively. The growth rates had a clear seasonal dependency with minimum during winter and maxima in spring and late summer. The relative contribution of estimated sulphuric acid to the growth rate was decreasing with increasing particle size and could explain more than 20% of the observed growth rate only for the 1.5–3 nm size range. Also the air mass history analysis indicated the highest formation and growth rates to be associated with the area of highest VOC (Volatile Organic Compounds) emissions following from biological activity rather than the highest estimated sulphuric acid concentrations. The frequency of new particle formation, however, increased nearly monotonously with the estimated sulphuric acid reaching 100% at H2SO4 concentration of 6 · 107 cm−3, which suggests the formation and growth to be independent of each other.


2010 ◽  
Vol 10 (12) ◽  
pp. 30777-30821 ◽  
Author(s):  
V. Vakkari ◽  
H. Laakso ◽  
M. Kulmala ◽  
A. Laaksonen ◽  
D. Mabaso ◽  
...  

Abstract. This study is based on 18 months (20 July 2006–5 February 2008) of continuous measurements of aerosol particle size distributions, air ion size distributions, trace gas concentrations and basic meteorology in a semi-clean savannah environment in Republic of South Africa. New particle formation and growth was observed on 69% of the days and bursts of non-growing ions/sub-10 nm particles on additional 14% of the days. The new particle formation and growth rates were among the highest reported in the literature for continental boundary layer locations; median 10 nm formation rate was 2.2 cm−3s−1 and median 10–30 nm growth rate 8.9 nm h−1. The median 2 nm ion formation rate was 0.5 cm−3s−1 and the median ion growth rates were 6.2, 8.0 and 8.1 nm h−1 for size ranges 1.5–3 nm, 3–7 nm and 7–20 nm, respectively. Three different approaches were used to study the origin of the formation and growth rates: seasonal variation, air mass history analysis and estimated sulphuric acid contribution to the growth. The growth rates had a clear seasonal dependency with minimum during winter and maxima in spring and late summer and the air mass history analysis indicated the highest formation and growth rates to be associated with the area of highest VOC (Volatile Organic Compounds) emissions rather than the highest estimated sulphuric acid concentrations. The relative contribution of estimated sulphuric acid to the growth rate was decreasing with increasing particle size and could explain more than 20% of the observed growth rate only for the 1.5–3 nm size range. The implication is that the sulphuric acid alone is not enough to explain the growth, but the highest growth rates seem to originate in VOC emissions following from biological activity. The frequency of new particle formation, however, increased nearly monotonously with the estimated sulphuric acid reaching 100% at H2SO4 concentration of 4×107cm−3, which suggests the formation and growth to be independent of each other.


2011 ◽  
Vol 11 (16) ◽  
pp. 8447-8458 ◽  
Author(s):  
K. Neitola ◽  
E. Asmi ◽  
M. Komppula ◽  
A.-P. Hyvärinen ◽  
T. Raatikainen ◽  
...  

Abstract. A fraction of the Himalayan aerosols originate from secondary sources, which are currently poorly quantified. To clarify the climatic importance of regional secondary particle formation in the Himalayas, data from 2005 to 2010 of continuous aerosol measurements at a high-altitude (2180 m) Indian Himalayan site, Mukteshwar, were analyzed. For this period, the days were classified, and the particle formation and growth rates were calculated for clear new particle formation (NPF) event days. The NPF events showed a pronounced seasonal cycle. The frequency of the events peaked in spring, when the ratio between event and non-event days was 53 %, whereas the events were truly sporadic on any other seasons. The annual mean particle formation and growth rates were 0.40 cm−3 s−1 and 2.43 nm h−1, respectively. The clear annual cycle was found to be mainly controlled by the seasonal evolution of the Planetary Boundary Layer (PBL) height together with local meteorological conditions. Spring NPF events were connected with increased PBL height, and therefore characterised as boundary layer events, while the rare events in other seasons represented lower free tropospheric particle formation. This provides insight on the vertical extent of NPF in the atmosphere.


2009 ◽  
Vol 9 (1) ◽  
pp. 5119-5151 ◽  
Author(s):  
H. E. Manninen ◽  
T. Nieminen ◽  
I. Riipinen ◽  
T. Yli-Juuti ◽  
S. Gagné ◽  
...  

Abstract. Despite the fact that frequent aerosol formation has been observed in various locations in the atmosphere, the overall magnitude of the new particle formation as a particle source is still unclear. In order to understand the particle formation and growth processes, we investigate the magnitudes of the particle formation and growth rates at the size where the real atmospheric nucleation and activation occurs. The relative contribution of neutral and charged particles to the new particle formation rate is also studied. The data include particle and ion number size distributions and total particle concentration measurements at a boreal forest site in Hyytiälä, Finland, during the spring 2007 EUCAARI field campaign. The total and charged particle formation rates differed from each other by approximately an order of magnitude. The median formation rates of 2 nm total and charged particles were 0.65 cm−3 s−1 and 0.03 cm−3 s−1, respectively. The median growth rates of particles in size classes 1.3–3, 3–7 and 7–30 nm were 1.9, 3.6 and 4.2 nm h−1, respectively. The calculated ion-ion recombination rates were about the same order of magnitude as the ion-induced formation rates. The results indicate that the ion-induced nucleation involving the ion-ion recombination products, i.e. ion mediated nucleation, contributes approximately 10% to the boreal forest new particle formation events.


Sign in / Sign up

Export Citation Format

Share Document