scholarly journals Mixing characteristics of refractory black carbon aerosols determined by a tandem CPMA-SP2 system at an urban site in Beijing

Author(s):  
Hang Liu ◽  
Xiaole Pan ◽  
Dantong Liu ◽  
Xiaoyong Liu ◽  
Xueshun Chen ◽  
...  

Abstract. Black carbon aerosols play an important role in climate change by absorbing solar radiation and degrading visibility. In this study, the mixing state of refractory black carbon (rBC) at an urban site in Beijing was studied with a single particle soot photometer (SP2), as well as a tandem observation system with a centrifugal particle mass analyzer (CPMA) and a differential mobility analyzer (DMA), in early summer of 2018. The results demonstrated that the mass-equivalent size distribution of rBC exhibited an approximately lognormal distribution with a mass median diameter (MMD) of 171.2 nm. When the site experienced prevailing southerly winds, the MMD of rBC increased notably by 19 %. During the observational period, the ratio of the diameter of rBC-containing particles (Dp) to the rBC core (Dc) was 1.20 on average for Dc = 180 nm, indicating that the majority of rBC particles were thinly coated. The Dp / Dc value exhibited a clear diurnal pattern, with a maximum at 1400 LST and an enhancing rate of 0.013/h; higher Ox conditions increased the coating enhancing rate. Bare rBC particles were primarily in a fractal structure with a mass fractal dimension (Dfm) of 2.35, with limited variation during both clean and pollution periods, indicating significant impacts from on-road vehicle emissions. The morphology of rBC-containing particles vairied with aging processes. The mixing state of rBC particles could be indicated by the mass ratio of non-refractory matter to rBC (MR). In the present study, rBC-containing particles were primarily found in an external fractal structure when MR  6, at which the measured scattering cross section of rBC-containing particles was consistent with that based on the Mie-scattering simulation. We found only 9 % of the rBC-containing particles were in core-shell structures on clean days with a particle mass of 10 fg, and the number fraction of core-shell structures increased considerably to 32 % on pollution days. Considering the morphology change, the absorption enhancement (Eabs) was 11.7 % higher based on core-shell structures. This study highlights the combined effects of morphology and coating thickness on the Eabs of rBC-containing particles, which will be helpful for determining the climatic effects of BC.

2020 ◽  
Vol 20 (9) ◽  
pp. 5771-5785 ◽  
Author(s):  
Hang Liu ◽  
Xiaole Pan ◽  
Dantong Liu ◽  
Xiaoyong Liu ◽  
Xueshun Chen ◽  
...  

Abstract. Black carbon aerosols play an important role in climate change because they directly absorb solar radiation. In this study, the mixing state of refractory black carbon (rBC) at an urban site in Beijing in the early summer of 2018 was studied with a single-particle soot photometer (SP2) as well as a tandem observation system with a centrifugal particle mass analyzer (CPMA) and a differential mobility analyzer (DMA). The results demonstrated that the mass-equivalent size distribution of rBC exhibited an approximately lognormal distribution with a mass median diameter (MMD) of 171 nm. When the site experienced prevailing southerly winds, the MMD of rBC increased notably, by 19 %. During the observational period, the ratio of the diameter of rBC-containing particles (Dp) to the rBC core (Dc) was 1.20 on average for Dc=180 nm, indicating that the majority of rBC particles were thinly coated. The Dp∕Dc value exhibited a clear diurnal pattern, with a maximum at 14:00 LST and a Dp growth rate of 2.3 nm h−1; higher Ox conditions increased the coating growth rate. The microphysical properties of rBC were also studied. Bare rBC particles were mostly found in fractal structures with a mass fractal dimensions (Dfm) of 2.35, with limited variation during both clean and polluted periods. The morphology of rBC changed with coating thickness increasing. When the mass ratio of nonrefractory matter to rBC (MR) was <1.5, rBC-containing particles were primarily found in external fractal structures, and they changed to a core–shell structure when MR>6, at which point the measured scattering cross section of rBC-containing particles was consistent with that based on the Mie-scattering simulation. We found that only 28 % of the rBC-containing particles were in core–shell structures with a particle mass of 10 fg in the clean period but that proportion increased considerably, to 45 %, in the polluted period. Due to the morphology change, the absorption enhancement (Eabs) was 12 % lower than that predicted for core–shell structures.


2020 ◽  
Vol 222 ◽  
pp. 117141 ◽  
Author(s):  
Yan Ma ◽  
Congcong Huang ◽  
Halim Jabbour ◽  
Zewen Zheng ◽  
Yibo Wang ◽  
...  

2016 ◽  
Vol 551-552 ◽  
pp. 51-56 ◽  
Author(s):  
Xinjuan Cui ◽  
Xinfeng Wang ◽  
Lingxiao Yang ◽  
Bing Chen ◽  
Jianmin Chen ◽  
...  

2019 ◽  
Author(s):  
Xiaole Pan ◽  
Hang Liu ◽  
Yu Wu ◽  
Yu Tian ◽  
Yele Sun ◽  
...  

Abstract. Refractory black carbon (rBC) is one of the most important short-lived climate forcers in the atmosphere. Light absorption enhancement capacity largely depends on the morphology of rBC-containing particles and their mixing state. In this study, a tandem measuring system, consisting of an aerodynamic aerosol classifier (AAC), a differential mobility analyzer (DMA) and a single particle soot photometer (SP2), was adopted to investigate dynamic shape factor (𝜒) and its relationship with the mixing state of rBC-containing particles at an urban site of Beijing megacity in winter. The results demonstrated that the aerosol particles with an aerodynamic diameter of 400 ± 1.2 nm normally had a mobility diameter (Dmob) ranging from 250 nm to 320 nm, reflecting a large variation in shape under different pollution conditions. Multiple Gaussian fitting on the number mass-equivalent diameter (Dmev) distribution of the rBC core determined by SP2 had two peaks at Dmev = 106.5 nm and Dmev = 146.3 nm. During pollution episodes, rBC-containing particles tended to have a smaller rBC core than those during clean episodes due to rapid coagulation and condensation processes. The 𝜒 values of the particles were found to be ~ 1.2 during moderate pollution conditions, although the shell-core ratio (S/C) of rBC-containing particles was as high as 2.7 ± 0.3, suggesting that the particles had an irregular structure as a result of the high fraction of nascent rBC aggregates. During heavy pollution episodes, the 𝜒 value of the particles was approximately 1.0, indicating that the majority of particles tended to be spherical, and a shell-core model could be reasonable to estimate the light enhancement effect. Considering the variation in shape of the particles, the light absorption enhancement of the particles differed significantly according to the T-matrix model simulation. This study suggested that accurate description of the morphology of rBC-containing particles was crucially important for optical simulation and better evaluation of their climate effect.


Sign in / Sign up

Export Citation Format

Share Document