scholarly journals Supplementary material to "Quantitative impacts of meteorology and precursor emission changes on the long-term trend of ambient ozone over the Pearl River Delta, China and implications for ozone control strategy"

Author(s):  
Leifeng Yang ◽  
Huihong Luo ◽  
Zibing Yuan ◽  
Junyu Zheng ◽  
Zhijiong Huang ◽  
...  
2008 ◽  
Vol 42 (7) ◽  
pp. 1424-1435 ◽  
Author(s):  
Xuejiao Deng ◽  
Xuexi Tie ◽  
Dui Wu ◽  
Xiuji Zhou ◽  
Xueyan Bi ◽  
...  

2019 ◽  
Author(s):  
Leifeng Yang ◽  
Huihong Luo ◽  
Zibing Yuan ◽  
Junyu Zheng ◽  
Zhijiong Huang ◽  
...  

Abstract. China is experiencing increasingly serious ambient ozone pollution, including the economically developed Pearl River Delta (PRD) region. However, the underlying reasons for ozone increase remain largely unclear, leading to perplexity in formulating effective ozone control strategies. In this study, by developing a statistical analysis framework combining meteorological adjustment and source apportionment, we examine quantitatively the impacts of meteorology and precursor emissions from within and outside the PRD on the evolution of ozone during the past decade. We found that meteorological condition has mitigated ozone increase, and its variation can account for at most 15 % of annual ozone concentration in the PRD. Precursor emission from outside the PRD (non-local) makes the largest contribution to ambient ozone in the PRD and shows a consistently increasing trend, while that from within the PRD (local) shows a significant spatial heterogeneity and plays a more important role during ozone episodes over southwestern. Under general conditions, the impact on northeastern is positive but decreasing, and on southwestern is negative but increasing. During ozone episodes, the impact on northeastern is negative and decreasing, while on southwestern is positive but decreasing. Central and western PRD is the only area with increasing local ozone contribution. The spatial heterogeneity in both local ozone contribution and its trend under general conditions and ozone episodes are well interpreted by a conceptual model collectively taking into account ozone precursor emissions and their changing trends, ozone formation regimes, and the monsoonal and micro-scale synoptic conditions over different sub-regions of the PRD. In particular, we conclude that the inappropriate NOx / VOC control ratio within the PRD over the past years is most likely responsible for the ozone increase over southwestern, both under general conditions and during ozone episodes. By investigating the ozone evolution influenced by emission changes within and outside PRD during the past decade, this study highlights the importance of establishing a dichotomous ozone control strategy to tackle with general conditions and pollution events separately. NOx emission control should be further strengthened to alleviate peak ozone level during episodes. Detailed investigation is needed to retrieve appropriate NOx / VOC ratios for different emission and meteorological conditions, so as to maximize the ozone reduction efficiency in the PRD.


2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Eric H Lau ◽  
C Lee ◽  
B J Cowling

Objective: This study examined the epidemiology of scarlet fever in Hong Kong based on notifiable disease surveillance data, in a period where a 10-fold upsurge in scarlet fever incidence occurred. High risk groups and important factors associated with scarlet fever transmission were identified.Introduction: Scarlet fever is a notifiable disease in Hong Kong for over 40 years. There was relatively low activity of scarlet fever until an outbreak in mid-2011 which resulted in two deaths and more than 1,500 cases. Scarlet fever incidence remained elevated since then with >10-fold increase comparing to that before the upsurge (1, 2). Reemergence of scarlet fever was also reported in China in 2011 and the United Kingdom in 2014 (3). We analyzed the patterns in scarlet fever incidence in Hong Kong using the notifiable disease surveillance data from 2005–2015.Methods: We analyzed 7,266 scarlet fever cases aged 14y or younger from 2005-2015, who were notified to the Department of Health. Hierarchical multivariable negative binomial models were fitted to the data to study the effects of age, sex, school holidays, and other meteorological parameters, accounting for autocorrelation, seasonal and long-term trend. Separate models were fitted to the data before and after the upsurge in 2011, excluding data in 2011 to allow for a 1-year window period.Results: We observed seasonal pattern throughout the study period (Figure). Among children aged ≤5y, the average scarlet fever incidence was 3.3 per 10,000 children in 2005-2010, which increased substantially to 18.1 per 10,000 children in 2012-2015.The final model included age, sex, school holidays in the preceding week, temperature, relative humidity, rainfall, long-term and bimodal seasonal trend. Based on the model, we identified no significant long-term trend before the upsurge in 2011, but there was a mild decreasing trend of about 8% (95% CI=6-11%) per year after the upsurge. A major peak was identified in December to January, with a milder peak in May to June.We found that the most affected groups were kindergarten students (3-5y), followed by primary school students (6-11y). Comparing to girls aged 0-2y, boys had significantly higher risk than girls except for the 0-2y age group, and boys aged 3-5y had the highest risk (adjusted incidence rate ratio (IRR)=1.47, 95% CI=1.32-1.65). School holidays were significantly associated with lower incidence of scarlet fever, with an adjusted IRR of 0.58 (95% CI=0.51–0.65) after the upsurge in 2011. Temperature was found to be negatively associated with scarlet fever incidence (adjusted IRR=0.963, 95% CI=0.940-0.987) after the upsurge.Conclusions: Our study showed that elevated activity of scarlet fever was sustained for more than 5 years after the upsurge in 2011. We found that younger children who started schools, especially for boys aged 3-5 years, had a higher risk of scarlet fever, and there was significant effect of school holidays in reducing scarlet fever incidence. Combining these findings, school-based control strategy is likely to be effective. Sustained and consistent surveillance of scarlet fever allows continued monitoring of potential change in high risk group to drive updated and effective control strategy.


Sign in / Sign up

Export Citation Format

Share Document