scholarly journals Supplementary material to "Chemical characterization of oxygenated organic compounds in gas-phase and particle-phase using iodide-CIMS with FIGAERO in urban air"

Author(s):  
Chenshuo Ye ◽  
Bin Yuan ◽  
Yi Lin ◽  
Zelong Wang ◽  
Weiwei Hu ◽  
...  
2021 ◽  
Vol 21 (11) ◽  
pp. 8455-8478
Author(s):  
Chenshuo Ye ◽  
Bin Yuan ◽  
Yi Lin ◽  
Zelong Wang ◽  
Weiwei Hu ◽  
...  

Abstract. The atmospheric processes under polluted environments involving interactions of anthropogenic pollutants and natural emissions lead to the formation of various and complex secondary products. Therefore, the characterization of oxygenated organic compounds in urban areas remains a pivotal issue in our understanding of the evolution of organic carbon. Here, we describe measurements of an iodide chemical ionization time-of-flight mass spectrometer installed with a Filter Inlet for Gases and AEROsols (FIGAERO-I-CIMS) in both the gas phase and the particle phase at an urban site in Guangzhou, a typical megacity in southern China, during the autumn of 2018. Abundant oxygenated organic compounds containing two to five oxygen atoms were observed, including organic acids, multi-functional organic compounds typically emitted from biomass burning, oxidation products of biogenic hydrocarbons and aromatics. Photochemistry played dominant roles in the formation of gaseous organic acids and isoprene-derived organic nitrates, while nighttime chemistry contributed significantly to the formation of monoterpene-derived organic nitrates and inorganics. Nitrogen-containing organic compounds occupied a significant fraction of the total signal in both the gas and particle phases, with elevated fractions at higher molecular weights. Measurements of organic compounds in the particle phase by FIGAERO-I-CIMS explained 24 ± 0.8 % of the total organic aerosol mass measured by aerosol mass spectrometer (AMS), and the fraction increased for more aged organic aerosol. The systematical interpretation of mass spectra of the FIGAERO-I-CIMS in the urban area of Guangzhou provides a holistic view of numerous oxygenated organic compounds in the urban atmosphere, which can serve as a reference for the future field measurements by FIGAERO-I-CIMS in polluted urban regions.


2020 ◽  
Author(s):  
Chenshuo Ye ◽  
Bin Yuan ◽  
Yi Lin ◽  
Zelong Wang ◽  
Weiwei Hu ◽  
...  

Abstract. The characterization of oxygenated organic compounds in urban areas remains a pivotal gap in our understanding of the evolution of organic carbon under polluted environments, as the atmospheric processes involving interactions between organics and inorganics, anthropogenic pollutants and natural emissions lead to formation of various and complex secondary products. Here, we describe measurements of an iodide chemical ionization time-of-flight mass spectrometer installed with a Filter Inlet for Gases and AEROsols (FIGAERO-I-CIMS) in both gas-phase and particle-phase at an urban site in Guangzhou, a typical mega-city in southern China, during the autumn of 2018. Abundant oxygenated organic compounds containing 2~5 oxygen atoms were observed, including organic acids, multi-functional organics typically emitted form biomass burning, oxidation products of biogenic hydrocarbons and aromatics. Photochemistry played dominant roles in the formation of gaseous organic acids and isoprene-derived organic nitrates, while nighttime chemistry contributed significantly to the formation monoterpene-derived organic nitrates and inorganics. Nitrogen-containing organic compounds occupied a significant fraction of the total signal in both gas and particle phases, with elevated fractions at higher molecular weights. Measurements of organic compounds in particle phase by FIGAERO-I-CIMS explained 24 % of the total organic aerosol mass measured by aerosol mass spectrometer (AMS), and the fraction increased for more aged organic aerosol. The systematically interpretation of mass spectra of the FIGAERO-I-CIMS in urban of Guangzhou provides a holistic view of numerous oxygenated organic compounds in the urban atmosphere, which can serve as a reference for the future field measurements by FIGAERO-I-CIMS in polluted urban regions.


2021 ◽  
pp. 1-13
Author(s):  
Li Tan ◽  
Ning Wang ◽  
Yingjian Dong ◽  
Siyuan Li ◽  
Xuehan Wang ◽  
...  

2012 ◽  
Vol 46 (19) ◽  
pp. 10455-10462 ◽  
Author(s):  
Manuela van Pinxteren ◽  
Conny Müller ◽  
Yoshiteru Iinuma ◽  
Christian Stolle ◽  
Hartmut Herrmann

2018 ◽  
Vol 18 (1) ◽  
pp. 357-370 ◽  
Author(s):  
Havala O. T. Pye ◽  
Andreas Zuend ◽  
Juliane L. Fry ◽  
Gabriel Isaacman-VanWertz ◽  
Shannon L. Capps ◽  
...  

Abstract. Several models were used to describe the partitioning of ammonia, water, and organic compounds between the gas and particle phases for conditions in the southeastern US during summer 2013. Existing equilibrium models and frameworks were found to be sufficient, although additional improvements in terms of estimating pure-species vapor pressures are needed. Thermodynamic model predictions were consistent, to first order, with a molar ratio of ammonium to sulfate of approximately 1.6 to 1.8 (ratio of ammonium to 2  ×  sulfate, RN∕2S  ≈  0.8 to 0.9) with approximately 70 % of total ammonia and ammonium (NHx) in the particle. Southeastern Aerosol Research and Characterization Network (SEARCH) gas and aerosol and Southern Oxidant and Aerosol Study (SOAS) Monitor for AeRosols and Gases in Ambient air (MARGA) aerosol measurements were consistent with these conditions. CMAQv5.2 regional chemical transport model predictions did not reflect these conditions due to a factor of 3 overestimate of the nonvolatile cations. In addition, gas-phase ammonia was overestimated in the CMAQ model leading to an even lower fraction of total ammonia in the particle. Chemical Speciation Network (CSN) and aerosol mass spectrometer (AMS) measurements indicated less ammonium per sulfate than SEARCH and MARGA measurements and were inconsistent with thermodynamic model predictions. Organic compounds were predicted to be present to some extent in the same phase as inorganic constituents, modifying their activity and resulting in a decrease in [H+]air (H+ in µg m−3 air), increase in ammonia partitioning to the gas phase, and increase in pH compared to complete organic vs. inorganic liquid–liquid phase separation. In addition, accounting for nonideal mixing modified the pH such that a fully interactive inorganic–organic system had a pH roughly 0.7 units higher than predicted using traditional methods (pH  =  1.5 vs. 0.7). Particle-phase interactions of organic and inorganic compounds were found to increase partitioning towards the particle phase (vs. gas phase) for highly oxygenated (O : C  ≥  0.6) compounds including several isoprene-derived tracers as well as levoglucosan but decrease particle-phase partitioning for low O : C, monoterpene-derived species.


Sign in / Sign up

Export Citation Format

Share Document