scholarly journals Supplementary material to "The Warming Tibetan Plateau improves winter air quality in the Sichuan Basin, China"

Author(s):  
Shuyu Zhao ◽  
Tian Feng ◽  
Xuexi Tie ◽  
Zebin Wang
2020 ◽  
Author(s):  
Shuyu Zhao ◽  
Tian Feng ◽  
Xuexi Tie ◽  
Zebin Wang

Abstract. Impacts of global climate change on the occurrence and development of air pollution have attracted more attentions. This study investigates impacts of the warming Tibetan Plateau on air quality in the Sichuan Basin. Meteorological observations and ERA-interim reanalysis data reveal that the Tibetan Plateau has been rapidly warming during the last 40 years (1979–2017), particularly in winter when the warming rate is approximately twice as much as the annual warming rate. Since 2013, the winter temperature over the plateau has even risen by 2 °C. Here, we use the WRF-CHEM model to assess the impact of the 2 °C warming on air quality in the Sichuan Basin. The model results show that the 2 °C warming causes an increase in the Planetary Boundary Layer (PBL) height and a decrease in the relative humidity (RH) in the basin. The elevated PBL height strengthens vertical diffusion of PM2.5, while the decreased RH significantly reduces secondary aerosol formation. Overall, PM2.5 concentration is reduced by 17.5 % (~ 25.1 μg m−3), of which the reduction in primary and secondary aerosols is 5.4 μg m−3 and 19.7 μg m−3, respectively. These results reveal that the recent warming plateau has improved air quality in the basin, to some certain extent, mitigating the air pollution therein. Nevertheless, climate system is particularly complicated, and more studies are needed to demonstrate the impact of climate change on air quality in the downstream regions as the plateau is likely to continue warming.


2020 ◽  
Vol 20 (23) ◽  
pp. 14873-14887
Author(s):  
Shuyu Zhao ◽  
Tian Feng ◽  
Xuexi Tie ◽  
Zebin Wang

Abstract. Impacts of global climate change on the occurrence and development of air pollution have attracted more attention. This study investigates impacts of the warming Tibetan Plateau on air quality in the Sichuan Basin. Meteorological observations and ERA-Interim reanalysis data reveal that the plateau has been rapidly warming during the last 40 years (1979–2017), particularly in winter when the warming rate is approximately twice as much as the annual warming rate. Since 2013, the winter temperature over the plateau has even risen by 2 ∘C. Here we use the WRF-Chem model to lay emphasis on the impact of the 2 ∘C warming on air quality in the basin. The model results show that the 2 ∘C warming causes an enhanced easterly wind, an increase in the planetary boundary layer height (PBLH) and a decrease in the relative humidity (RH) in the basin. Enhanced easterly wind increases PM2.5 transport from the basin to the plateau. The elevated PBLH strengthens vertical diffusion of PM2.5, while the decreased RH significantly reduces secondary aerosol formation. Overall, PM2.5 concentration is reduced by 17.5 % (∼25.1 µg m−3), of which the reduction in primary and secondary aerosols is 5.4 and 19.7 µg m−3, respectively. These results reveal that the recent warming plateau has improved air quality in the basin, to a certain extent mitigating the air pollution therein. Nevertheless, the climate system is particularly complicated, and more studies are needed to demonstrate the impact of climate change on air quality in the downstream regions as the plateau is likely to continue warming. Highlights The Tibetan Plateau is rapidly warming, and the temperature has risen by 2 ∘C from 2013 to 2017. A warming plateau leads to an enhanced easterly wind, an increased PBLH and a decreased RH in the Sichuan Basin. The 2 ∘C warming significantly reduces PM2.5 concentration in the basin by 25.1 µg m−3, of which secondary aerosol is 19.7 µg m−3.


2021 ◽  
pp. SP514-2021-2
Author(s):  
Weimu Xu ◽  
Johan W. H. Weijers ◽  
Micha Ruhl ◽  
Erdem F. Idiz ◽  
Hugh C. Jenkyns ◽  
...  

AbstractThe organic-rich upper Lower Jurassic Da'anzhai Member (Ziliujing Formation) of the Sichuan Basin, China is the first stratigraphically well-constrained lacustrine succession associated with the Toarcian Oceanic Anoxic Event (T-OAE; ∼183 Ma). The formation and/or expansion of the Sichuan mega-lake, likely one of the most extensive fresh-water systems to have existed on the planet, is marked by large-scale lacustrine organic productivity and carbon burial during the T-OAE, possibly due to intensified hydrological cycling and nutrient supply. New molecular biomarker and organic petrographical analyses, combined with bulk organic and inorganic geochemical and palynological data, are presented here, providing insight into aquatic productivity, land-plant biodiversity, and terrestrial ecosystem evolution in continental interiors during the T-OAE. We show that lacustrine algal growth during the T-OAE accounted for a significant organic-matter flux to the lakebed in the palaeo-Sichuan mega-lake. Lacustrine water-column stratification during the T-OAE facilitated the formation of dysoxic-anoxic conditions at the lake bottom, favouring organic-matter preservation and carbon sequestration into organic-rich black shales in the Sichuan Basin. We attribute the palaeo-Sichuan mega-lake expansion to enhanced hydrological cycling in a more vigorous monsoonal climate in the hinterland during the T-OAE greenhouse.Supplementary material at https://doi.org/10.6084/m9.figshare.c.5433544


2020 ◽  
Vol 727 ◽  
pp. 138584 ◽  
Author(s):  
Bangjun Cao ◽  
Xiaoyan Wang ◽  
Guicai Ning ◽  
Liang Yuan ◽  
Mengjiao Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document