warming rate
Recently Published Documents


TOTAL DOCUMENTS

121
(FIVE YEARS 47)

H-INDEX

25
(FIVE YEARS 4)

Author(s):  
Josh K. Willis

Abstract Since 2000, the Indian Ocean has warmed more rapidly than the Atlantic or Pacific. Air-sea fluxes alone cannot explain the rapid Indian Ocean warming, which has so far been linked to an increase in temperature transport into the basin through the Indonesian Throughflow (ITF). Here, we investigate the role that the heat transport out of the basin at 36°S plays in the warming. Adding the heat transport out of the basin to the ITF temperature transport into the basin, we calculate the decadal mean Indian Ocean heat budget over the 2010s. We find that heat convergence increased within the Indian Ocean over 2000-2019. The heat convergence over the 2010s is the same order as the warming rate, and thus the net air-sea fluxes are near zero. This is a significant change from previous analyses using trans-basin hydrographic sections from 1987, 2002, and 2009, which all found divergences of heat. A two year time series shows that seasonal aliasing is not responsible for the decadal change. The anomalous ocean heat convergence over the 2010s compared to previous estimates is due to changes in ocean currents at both the southern boundary (33%) and the ITF (67%). We hypothesize that the changes at the southern boundary are linked to an observed broadening of the Agulhas Current, implying that temperature and velocity data at the western boundary are crucial to constrain heat budget changes.


2021 ◽  
Vol 14 (1) ◽  
pp. 86
Author(s):  
Siyi Wang ◽  
Yongli He ◽  
Shujuan Hu ◽  
Fei Ji ◽  
Bin Wang ◽  
...  

Lake surface water temperature (LSWT) is sensitive to climate change. Previous studies have found that LSWT warming is occurring on a global scale and is expected to continue in the future. Recently, new global LSWT data products have been generated using satellite remote sensing, which provides an inimitable opportunity to study the LSWT response to global warming. Based on the satellite observations, we found that the warming rate of global lakes is uneven, with apparent regional differences. Indeed, comparing the LSWT warming in different climate zones (from arid to humid), the lakes in drylands experienced more significant warming (0.28 °C decade−1) than those in semi-humid and humid regions (0.19 °C decade−1) during previous decades (1995–2016). By further quantifying the impact factors, it showed that the LSWT warming is attributed to air temperature (74.4%), evaporation (4.1%), wind (9.9%), cloudiness (4.3%), net shortwave (3.1%), and net longwave (4.0%) over the lake surface. Air temperature is the main driving force for the warming of most global lakes, so the first estimate quantification of future LSWT trends can be determined from air temperature projections. By the end of the 21st century, the summer air temperature would warm up to 1.0 °C (SSP1-2.6) and 6.3 °C (SSP5-8.5) over lakes, with a more significant warming trend over the dryland lakes. Combined with their higher warming sensitivity, the excess summer LSWT warming in drylands is expected to continue, which is of great significance because of their high relevance in these water-limited regions.


2021 ◽  
Vol 15 (12) ◽  
pp. 5765-5783
Author(s):  
Lu Gao ◽  
Haijun Deng ◽  
Xiangyong Lei ◽  
Jianhui Wei ◽  
Yaning Chen ◽  
...  

Abstract. The phenomenon in which the warming rate of air temperature is amplified with elevation is termed elevation-dependent warming (EDW). It has been clarified that EDW can accelerate the retreat of glaciers and melting of snow, which can have significant impacts on the regional ecological environment. Owing to the lack of high-density ground observations in high mountains, there is widespread controversy regarding the existence of EDW. Current evidence is mainly derived from typical high-mountain regions such as the Swiss Alps, the Colorado Rocky Mountains, the tropical Andes and the Tibetan Plateau–Himalayas. Rare evidence in other mountain ranges has been reported, especially in arid regions. In this study, EDW features (regional warming amplification and altitude warming amplification) in the Chinese Tian Shan (CTM) were detected using a unique high-resolution (1 km, 6-hourly) air temperature dataset (CTMD) from 1979 to 2016. The results showed that there were significant EDW signals at different altitudes on different timescales. The CTM showed significant regional warming amplification in spring, especially in March, and the warming trends were greater than those of continental China with respect to three temperatures (minimum temperature, mean temperature and maximum temperature). The significance values of EDW above different altitude thresholds are distinct for three temperatures in 12 months. The warming rate of the minimum temperature in winter showed a significant elevation dependence (p<0.01), especially above 3000 m. The greatest altitudinal gradient in the warming rate of the maximum temperature was found above 4000 m in April. For the mean temperature, the warming rates in June and August showed prominent altitude warming amplification but with different significance above 4500 m. Within the CTM, the Tolm Mountains, the eastern part of the Borokoonu Mountains, the Bogda Mountains and the Balikun Mountains are representative regions that showed significant altitude warming amplification on different timescales. This new evidence could partly explain the accelerated melting of snow in the CTM, although the mechanisms remain to be explored.


Author(s):  
Daniel J. Vecellio ◽  
S. Tony Wolf ◽  
Rachel M. Cottle ◽  
W. Larry Kenney

A wet-bulb temperature of 35°C has been theorized to be the limit to human adaptability to extreme heat, a growing concern in the face of continued and predicted accelerated climate change. While this theorized threshold is based in physiological principles it has not been tested using empirical data. This study examined the critical wet-bulb temperature (Twb, crit) at which heat stress becomes uncompensable in young, healthy adults performing tasks at modest metabolic rates mimicking basic activities of daily life. Across six experimentally determined environmental limits, no subject's Twb, crit reached the 35°C limit and all means were significantly lower than the theoretical 35°C threshold. Mean Twb, crit values were relatively constant across 36-40°C humid environments and averaged 30.55±0.98 °C but progressively decreased (higher deviation from 35°C) in hotter, dry ambient environments. Twb, crit was significantly associated with mean skin temperature (and a faster warming rate of the skin) due to larger increases in dry heat gain in the hot-dry environments. As sweat rates did not significantly differ among experimental environments, evaporative cooling was outpaced by dry heat gain in hot-dry conditions, causing larger deviations from the theoretical 35°C adaptability threshold. In summary, a wet-bulb temperature threshold cannot be applied to human adaptability across all climatic conditions and where appropriate (high humidity), that threshold is well below 35°C.


MAUSAM ◽  
2021 ◽  
Vol 68 (3) ◽  
pp. 507-518
Author(s):  
HE ZHIMING ◽  
DENG SHIRU ◽  
LI LEI ◽  
PAK WAI CHAN

Most studies on the impact of China’s urbanization on local climate focus on developed coastal cities, with little attention paid to inland developing cities. In the present study, we selected three representative and neighboring developing cities (Nanchang, Jiujiang and De’an) in East China to examine, through comparative analyses, local climate changes in inland developing cities with varying sizes during the past 45 years, based on homogenized datasets (1967-2012) released by the National Ground Meteorological Station, taking local economic, demographic, etc. factors into account. Our findings are as follows: The speed of urbanization in these three inland developing cities is correlated to their respective status and sizes - the bigger the city, the faster the urbanization occurring in said city. The pace of the urbanization has a clear impact on the local temperature variability. For the past 45 years, the warming rate in Nanchang (large city) was approximately 0.27 /decade while that in Jiujiang (middle-size city) was approximately  0.23 /decade and that in De’an (small town) was approximately 0.20 /decade. The warming rate was observed to rise in line with city size. The number of high temperature days (HTDs) increased significantly in all three cities over the course of the past 45 years. During the period of 2003 to 2012, HTDs in Nanchang, Jiujiang and De’an increased by 9.8, 5.1 and 1.3 days, respectively, compared with the period of 1967-1976. The larger the city, the more significant the increase in HTDs was observed.


2021 ◽  
Vol 118 (33) ◽  
pp. e2015283118
Author(s):  
Da Wei ◽  
Yahui Qi ◽  
Yaoming Ma ◽  
Xufeng Wang ◽  
Weiqiang Ma ◽  
...  

High-latitude and high-altitude regions contain vast stores of permafrost carbon. Climate warming may result in the release of CO2 from both the thawing of permafrost and accelerated autotrophic respiration, but it may also increase the fixation of CO2 by plants, which could relieve or even offset the CO2 losses. The Tibetan Plateau contains the largest area of alpine permafrost on Earth. However, the current status of the net CO2 balance and feedbacks to warming remain unclear, given that the region has recently experienced an atmospheric warming rate of over 0.3 °C decade−1. We examined 32 eddy covariance sites and found an unexpected net CO2 sink during 2002 to 2020 (26 of the sites yielded a net CO2 sink) that was four times the amount previously estimated. The CO2 sink peaked at an altitude of roughly 4,000 m, with the sink at lower and higher altitudes limited by a low carbon use efficiency and a cold, dry climate, respectively. The fixation of CO2 in summer is more dependent on temperature than the loss of CO2 than it is in the winter months, especially at higher altitudes. Consistently, 16 manipulative experiments and 18 model simulations showed that the fixation of CO2 by plants will outpace the loss of CO2 under a wetting–warming climate until the 2090s (178 to 318 Tg C y−1). We therefore suggest that there is a plant-dominated negative feedback to climate warming on the Tibetan Plateau.


2021 ◽  
Vol 9 (8) ◽  
pp. 842
Author(s):  
Bayoumy Mohamed ◽  
Hazem Nagy ◽  
Omneya Ibrahim

Marine heat waves (MHWs) can have catastrophic consequences for the socio-environmental system. Especially in the Red Sea, which has the world’s second longest coral reef system. Here, we investigate the sea surface temperature (SST) variability and trends, as well as the spatiotemporal characteristics of marine heat waves (MHWs) in the Red Sea, using high resolution daily gridded (1/20°) SST data obtained from the Copernicus Marine Environment Monitoring Service (CMEMS) for the period 1982–2019. Results show that the average warming rate was about 0.342 ± 0.047 °C/decade over the entire Red Sea over the whole study period. The Empirical Orthogonal Function (EOF) analysis reveals that the maximum variability is over the central part of the Red Sea, while the minimum variability is in the southernmost part of the Red Sea. Over the last two decades (2000–2019), we have discovered that the average MHW frequency and duration increased by 35% and 67%, respectively. The results illustrate that the MHW frequency and duration trends have increased by 1.17 counts/decade and 1.79 days/decade, respectively, over the study period. The highest annual MHW frequencies were detected in the years 2018, 2019, 2010, and 2017. A strong correlation (R = 0.89) was found between the annual MHW frequency and the annual mean SST.


2021 ◽  
Author(s):  
Guo-Qing Jiang ◽  
Qinjian Jin ◽  
Jun Wei ◽  
Paola Malanotte-Rizzoli ◽  
Arnold L. Gordon ◽  
...  

AbstractThe South China Sea (SCS) experienced a significant reduction in warming rate (− 0.01 °C decade−1, $$p>0.10$$ p > 0.10 ) during 1999–2010 following an accelerated and unprecedented warming (+ 0.15 °C decade−1, $$p<0.01$$ p < 0.01 ) in the last three decades (1970–1998). However, most global climate models of the CMIP5 RCP4.5 scenario failed to capture this SCS warming slowdown. In this study, we identify two drivers through numerical simulations by using a regional high-resolution, ocean–atmosphere coupled climate model: the major variance (75%) in the sea surface warming slowdown could be explained by the strengthened winter monsoon over the SCS, and the minor variance (12%) could be explained by the changes in the upper ocean circulations. The winter monsoon over the SCS is likely linked to the La Niña-like SST pattern in the eastern tropical Pacific, which strengthens the Walker circulation and results in anticyclonic circulation over the northwestern Pacific. This enhanced winter monsoon is the atmospheric driver that slows down the SCS basin-scale warming, while the largest reduction of the warming rate occurs in the northern SCS that can be attributed to the oceanic throughflow via the Luzon Strait. These findings could have important implications for future climate projections over the SCS and adjacent oceans.


2021 ◽  
Vol 28 (2) ◽  
Author(s):  
I. D. Rostov ◽  
E. V. Dmitrieva ◽  
N. I. Rudykh ◽  
◽  
◽  
...  

Purpose. The study is aimed at identifying the regional features of the surface air temperature in the coastal zone and over the Pacific Ocean (to the north of 40° N) manifested as a result of global climate changes at the turn of the XX–XXI centuries, and at assessing their trends and possible causal relationships with the processes in the atmosphere and on the ocean surface. Methods and Results. Based on the Global Meteorological Network and NOAA reanalysis data, the regional features of interannual oscillations of the surface air temperature and their relationship with variations in the fields of pressure, wind and water temperature on the ocean surface, and with climate indices over the past 4 decades were identified. In order to determine the temperature field spatial-temporal structure and to zone the water area according to the features of climate changes, the methods of cluster, correlation analysis and the apparatus of empirical orthogonal functions were used. The results obtained made it possible to characterize the degree of heterogeneity of the studied area response to the ongoing global changes, to identify different domains and to assess quantitatively the warming rate in these water areas. Conclusions. The tendencies of modern warming are manifested in the trends of interannual air temperature variability, on the average, by ~0.20°C/10 years in the subarctic, and indicate significant regional differences (1.5–2 times) in the ongoing changes. In the west of the region, the warming rate is higher than in the east, where the temperature trends are minimal or statistically insignificant. In the warm period of a year, their values are higher than those in the cold period. The alternation phases of the warm and cold periods are consistent with the variation tendencies in the characteristics both of the atmospheric action centers and various climatic parameters. The corresponding correlations are most widely manifested in variations in the empirical orthogonal functions modes of the H500 geopotential field, and the PDO, NP, SOI, PTW, AD and EP/NP indices. Stable anomalies and trends of the ocean surface temperature in the North Atlantic also play an important role in formation of the Та anomalies in the western subarctic.


2021 ◽  
Vol 37 (2) ◽  
Author(s):  
I. D. Rostov ◽  
E. V. Dmitrieva ◽  
N. I. Rudykh ◽  
◽  
◽  
...  

Purpose. The study is aimed at identifying the regional features of the surface air temperature in the coastal zone and over the Pacific Ocean (to the north of 40° N) manifested as a result of global climate changes at the turn of the XX–XXI centuries, and at assessing their trends and possible causal relationships with the processes in the atmosphere and on the ocean surface. Methods and Results. Based on the Global Meteorological Network and NOAA reanalysis data, the regional features of interannual fluctuations of the surface air temperature and their relationship with variations in the fields of pressure, wind and water temperature on the ocean surface, and with climate indices over the past 4 decades were identified. In order to determine the temperature field spatialtemporal structure and to zone the water area according to the features of climate changes, the methods of cluster, correlation analysis and the apparatus of empirical orthogonal functions were used. The results obtained made it possible to characterize the degree of heterogeneity of the studied area response to the ongoing global changes, to identify different domains and to assess quantitatively the warming rate in these water areas. Conclusions. The tendencies of modern warming are manifested in the trends of interannual air temperature variability, on the average, by ~0.20°C/10 years in the subarctic, and indicate significant regional differences (1.5–2 times) in the ongoing changes. In the west of the region, the warming rate is higher than in the east, where the temperature trends are minimal or statistically insignificant. In the warm period of a year, their values are higher than those in the cold period. The alternation phases of the warm and cold periods are consistent with the variation tendencies in the characteristics both of the atmospheric action centers and various climatic parameters. The corresponding correlations are most widely manifested in variations in the empirical orthogonal functions modes of the H500 geopotential field, and the PDO, NP, SOI, PTW, AD and EP/NP indices. Stable anomalies and trends of the ocean surface temperature in the North Atlantic also play an important role in formation of the Та anomalies in the western subarctic.


Sign in / Sign up

Export Citation Format

Share Document