scholarly journals Supplementary material to "Top-down and bottom-up estimates of anthropogenic methyl bromide emissions from eastern China"

Author(s):  
Haklim Choi ◽  
Mi-Kyung Park ◽  
Paul J. Fraser ◽  
Hyeri Park ◽  
Sohyeon Geum ◽  
...  
2011 ◽  
Vol 11 (10) ◽  
pp. 28219-28272 ◽  
Author(s):  
T.-M. Fu ◽  
J. J. Cao ◽  
X. Y. Zhang ◽  
S. C. Lee ◽  
Q. Zhang ◽  
...  

Abstract. We simulate elemental carbon (EC) and organic carbon (OC) aerosols in China and compare model results to surface measurements at Chinese rural and background sites, with the goal of deriving "top-down" emission estimates of EC and OC, as well as better quantifying the secondary sources of OC. We include in the model state-of-the-science Chinese "bottom-up" emission inventories for EC (1.92 Tg C yr−1) and OC (3.95 Tg C yr−1), as well as updated secondary OC formation pathways. The average simulated annual mean EC concentration at rural and background site is 1.1 μg C m−3, 56% lower than the observed 2.5 μg C m−3. The average simulated annual mean OC concentration at rural and background sites is 3.4 μg C m−3, 76% lower than the observed 14 μg C m−3. Multiple regression to fit surface monthly mean EC observations at rural and background sites yields best estimate of Chinese EC source of 3.05 ± 0.78 Tg C yr−1. Based on the top-down EC emission estimate and observed seasonal primary OC/EC ratios, we estimate Chinese OC total emissions to be 6.67 ± 1.30 Tg C yr−1. Using these top-down estimates, the simulated average annual mean EC concentration at rural and background sites significantly improved to 1.9 μg C m−3. However, the model still significantly underestimates observed OC in all seasons (simulated average annual mean OC at rural and background sites is 5.4 μg C m−3), with little skill in capturing the spatiotemporal variability. Secondary formation accounts for 21% of Chinese annual mean surface OC in the model, with isoprene being the most important precursor. In summer, as high as 62% of the observed surface OC may be due to secondary formation in eastern China. Our analysis points to three shortcomings in the current bottom-up inventories of Chinese carbonaceous aerosols: (1) the anthropogenic source is severely underestimated, particularly for OC; (2) there is a missing source in western China, likely associated with the use of biofuels or other low-quality fuels for heating; and (3) sources in fall are not well represented, either because the seasonal shifting of emissions and/or secondary formation are poorly captured or because specific fall emission events are missing. More regional measurements with better spatiotemporal coverage are needed to resolve these shortcomings.


2021 ◽  
Author(s):  
Haklim Choi ◽  
Mi-Kyung Park ◽  
Paul J. Fraser ◽  
Hyeri Park ◽  
Sohyeon Geum ◽  
...  

Abstract. Methyl bromide (CH3Br) is a potent ozone-depleting substance (ODS) that has both natural and anthropogenic sources. CH3Br has been used mainly for preplant soil fumigation, post-harvest grain and timber fumigation, and structural fumigation. Most non-quarantine/pre-shipment (non-QPS) uses have been phased-out in 2005 for non-Article 5 (developed) countries and in 2015 for Article 5 (developing) countries under the Montreal Protocol on Substances that Deplete the Ozone Layer; some uses have continued under critical use exemptions (CUEs). Under the Protocol, individual nations are required to report annual data on CH3Br production and consumption for quarantine/pre-shipment (QPS) uses, non-QPS uses and CUEs to the United Nations Environment Programme (UNEP). In this study, we analyzed high precision, in situ measurements of atmospheric concentrations of CH3Br obtained at the Gosan station on Jeju island, Korea, from 2008 to 2019. The background concentrations of CH3Br in the atmosphere at Gosan declined from 8.5 ± 0.8 ppt in 2008 to 7.4 ± 0.6 ppt in 2019 at a rate of −0.13 ± 0.02 ppt yr−1. At Gosan, we also observed periods of persistent concentrations (pollution events) elevated above the decreasing background in continental air masses from China. Statistical back trajectory analyses showed that these pollution events predominantly trace back to CH3Br emissions from eastern China. Using an inter-species correlation (ISC) method with the reference trace species CFC-11 (CCl3F), we estimate anthropogenic CH3Br emissions from eastern China at 4.1 ± 1.3 Gg yr−1 in 2008–2019, approximately 2.9 ± 1.3 Gg yr−1 higher than the bottom-up emission estimates reported to UNEP. Possible non-fumigation CH3Br sources – rapeseed production and biomass burning – were assessed and it was found that the discrepancy is more likely due to unreported or incorrectly reported QPS and non-QPS fumigation uses. These largely-unreported anthropogenic emissions of CH3Br are confined to eastern China and account for 30–40 % of anthropogenic global CH3Br emissions. They are likely due to delays in the introduction of CH3Br alternatives, such as sulfuryl fluoride (SO2F2), heat, irradiation and a possible lack of industry awareness of the need for regulation of CH3Br production and use.


2012 ◽  
Vol 12 (5) ◽  
pp. 2725-2746 ◽  
Author(s):  
T.-M. Fu ◽  
J. J. Cao ◽  
X. Y. Zhang ◽  
S. C. Lee ◽  
Q. Zhang ◽  
...  

Abstract. We simulated elemental carbon (EC) and organic carbon (OC) aerosols in China and compared model results to surface measurements at Chinese rural and background sites, with the goal of deriving "top-down" emission estimates of EC and OC, as well as better quantifying the secondary sources of OC. We included in the model state-of-the-science Chinese "bottom-up" emission inventories for EC (1.92 TgC yr−1) and OC (3.95 TgC yr−1), as well as updated secondary OC formation pathways. The average simulated annual mean EC concentration at rural and background sites was 1.1 μgC m−3, 56% lower than the observed 2.5 μgC m−3. The average simulated annual mean OC concentration at rural and background sites was 3.4 μgC m−3, 76% lower than the observed 14 μgC m−3. Multiple regression to fit surface monthly mean EC observations at rural and background sites yielded the best estimate of Chinese EC source of 3.05 ± 0.78 TgC yr−1. Based on the top-down EC emission estimate and observed seasonal primary OC/EC ratios, we estimated Chinese OC emissions to be 6.67 ± 1.30 TgC yr−1. Using these top-down estimates, the simulated average annual mean EC concentration at rural and background sites was significantly improved to 1.9 μgC m−3. However, the model still significantly underestimated observed OC in all seasons (simulated average annual mean OC at rural and background sites was 5.4 μgC m−3), with little skill in capturing the spatiotemporal variability. Secondary formation accounts for 21% of Chinese annual mean surface OC in the model, with isoprene being the most important precursor. In summer, as high as 62% of the observed surface OC may be due to secondary formation in eastern China. Our analysis points to four shortcomings in the current bottom-up inventories of Chinese carbonaceous aerosols: (1) the anthropogenic source is underestimated on a national scale, particularly for OC; (2) the spatiotemporal distributions of emissions are misrepresented; (3) there is a missing source in western China, likely associated with the use of biofuels or other low-quality fuels for heating; and (4) sources in fall are not well represented, either because the seasonal shifting of emissions and/or secondary formation are poorly captured or because specific fall emission events are missing. In addition, secondary production of OC in China is severely underestimated. More regional measurements with better spatiotemporal coverage are needed to resolve these shortcomings.


Author(s):  
Lin Zhang ◽  
Youfan Chen ◽  
Yuanhong Zhao ◽  
Daven K. Henze ◽  
Liye Zhu ◽  
...  

PsycCRITIQUES ◽  
2005 ◽  
Vol 50 (19) ◽  
Author(s):  
Michael Cole
Keyword(s):  
Top Down ◽  

Sign in / Sign up

Export Citation Format

Share Document