scholarly journals An evaluation of new particle formation events in Helsinki during a Baltic Sea cyanobacterial summer bloom

2021 ◽  
Author(s):  
Roseline Cutting Thakur ◽  
Lubna Dada ◽  
Lisa J. Beck ◽  
Lauriane L. J. Quéléver ◽  
Tommy Chan ◽  
...  

Abstract. Several studies have investigated New Particle Formation (NPF) events from various sites ranging from pristine locations, including (boreal) forest sites to urban areas. However, there is still a dearth of studies investigating NPF processes and subsequent aerosol growth in coastal yet semi-urban sites, where the tropospheric layer is a concoction of biogenic and anthropogenic gases and particles. The investigation of factors leading to NPF becomes extremely complex due to the highly dynamic meteorological conditions at the coastline especially when combined with both continental and oceanic weather conditions. Herein, we engage a comprehensive study of particle number size distributions and aerosol-forming precursor vapors at the coastal semi-urban site in Helsinki, Finland. The measurement period, 25 June 2019–18 August 2019, was timed with the recurring cyanobacterial summer bloom in the Baltic Sea region and coastal regions of Finland. Our study recorded several regional/local NPF and aerosol burst events during this period. Although the overall anthropogenic influence on Sulfuric Acid (SA) concentrations was low during the measurement period, we observed that the regional or local NPF events, characterized by SA concentrations in the order of 107 molecules per cm−3 occurred mostly when the air mass travelled over the land areas. Interestingly, when the air mass travelled over the Baltic Sea, an area enriched with Algae and cyanobacterial blooms, high Iodic Acid (IA) concentration coincided with an aerosol burst or a spike event at the measurement site. Further, SA-rich bursts were seen when the air mass travelled over the Gulf of Bothnia, enriched with cyanobacterial blooms. The two most important factors affecting aerosol precursor vapor concentrations, and thus the aerosol formation, were (1) the type of phytoplankton species and intensity of bloom present in the coastal regions of Finland/ Baltic Sea and (2) the wind direction. During the events, most of the growth of sub-3 nm particles was probably due to SA, rather than IA or MSA, however much of the particle growth remained unexplained indicative of the strong role of organics in the growth of particles, especially in the 3–7 nm particle size range. Further studies are needed to explore the role of organics in NPF events and the potential influence of cyanobacterial blooms in coastal locations.

AMBIO ◽  
2001 ◽  
Vol 30 (4) ◽  
pp. 172-178 ◽  
Author(s):  
Terttu Finni ◽  
Kaisa Kononen ◽  
Riitta Olsonen ◽  
Kerstin Wallström

2015 ◽  
Vol 55 (1) ◽  
pp. 5-15
Author(s):  
E. A. Kulikov ◽  
I. P. Medvedev ◽  
K. P. Koltermann

Estuaries ◽  
2003 ◽  
Vol 26 (3) ◽  
pp. 680-689 ◽  
Author(s):  
Per Westman ◽  
Johanna Borgendahl ◽  
Thomas S. Bianchi ◽  
Nianhong Chen

2015 ◽  
Vol 75 (3) ◽  
pp. 749-790 ◽  
Author(s):  
Fredrik N.G. Andersson ◽  
Jonas Ljungberg

This article explores the development of market integration within the Baltic Sea region and with England, from the 1840s to the late 1880s. It exploits two new datasets on grain prices. The degree of market integration is estimated using a wavelet variant of dynamic factor analysis that takes account of both time and distance. Additionally, we use the London corn market as the benchmark for the degree of market integration. Our results show that the role of distance disappeared in the wheat and rye, but not in the oats and barley trade, as the Baltic Sea Region became integrated into the Atlantic economy.


2019 ◽  
Author(s):  
Jérôme Kaiser ◽  
Norbert Wasmund ◽  
Mati Kahru ◽  
Anna K. Wittenborn ◽  
Regina Hansen ◽  
...  

Abstract. Summer cyanobacterial blooms represent a threat for the Baltic Sea ecosystem, causing deoxygenation of the bottom water and the spread of the so-called dead zones. The time history of the Baltic Sea cyanobacterial blooms is known from in situ and satellite observations since the early 1980s, but still not well understood. By comparing both weekly-resolved trap sediments and a well-dated sediment core from the Eastern Gotland Basin with monitoring and satellite cyanobacterial data of the last ca. 35 years, it is shown here that 6- and 7-methylheptadecane lipids (expressed as 6+7Me-C17:0) are robust semi-quantitative biomarkers for diazotrophic cyanobacteria, and likely mainly for Nodularia spumigena. Using this organic proxy, it was thus possible to reconstruct the history of cyanobacterial blooms beyond the observational period with a resolution of 2–4 years since 1860. Cyanobacteria were constantly present, but in relatively low abundance until 1920, when they started to alternate between periods with high and low abundance. Interestingly, there seems to be no significant increase in cyanobacterial abundance in the 1950s, when eutrophication and deoxygenation of the Baltic Sea increased considerably. Decadal to multi-decadal fluctuations are likely rather related to variability in the Baltic Sea surface temperature and, ultimately, to the Atlantic Multidecadal Oscillation. A 7000 years long 6+7Me-C17:0 record from the Bothnian Sea also suggests a relationship with the mean summer temperature in the Baltic Sea region, but at a multi-centennial to multi-millennial timescale. The intensity of the cyanobacterial blooms in the Baltic Sea is thus likely mainly related to natural processes such as temperature variability, at least at a multi-decadal to multi-millennial timescale.


2019 ◽  
Author(s):  
Anna Piwoni-Piórewicz ◽  
Stanislav Strekopytov ◽  
Emma Humphreys-Williams ◽  
Piotr Kukliński

Abstract. In this study, the concentrations of 12 metals: Ca, Na, Sr, Mg, Ba, Mn, Cu, Pb, V, Y, U and Cd in shells of bivalve molluscs (aragonitic: Cerastoderma glaucum, Mya arenaria and Limecola balthica and bimineralic: Mytilus trossulus) and arthropods (calcitic: Amphibalanus improvisus) were obtained. The main goal was to determine the incorporation patterns of shells built with different calcium carbonate polymorphs. The role of potential biological control on the shell chemistry was assessed by comparing the concentrations of trace elements between younger and older individuals (different size classes). The potential impact of environmental factors on the observed elemental concentrations in the studied shells is discussed. Specimens were collected from brackish waters of the Baltic Sea (the Gulf of Gdansk). For every species, 40 individuals (ten in each size class) were selected. Pre-cleaned shells were analysed by ICP-OES and ICP-MS to determine the concentrations of metals. The distributions of elements both differ between species and exhibit high intraspecific variability. Calcitic shells preferentially incorporated Mg > Sr > Na, aragonitic shells incorporated Na > Sr > Mg, and bimineralic shells accumulated Na approximately two times more intensively, than Mg and Sr which remained at similar levels. Among all species, the calcitic shells of A. improvisus most effectively concentrated the majority of the studied elements, especially Mg > Mn > Ba, which was contrary to the shells of aragonitic molluscs that contained the lowest levels of trace elements. The size-dependent distributions of elements in shells did not exhibit a consistent pattern. The highest significant differences were found for the bimineralic shells of M. trossulus, while the smallest were found for aragonitic shells; if any variability occurred, it was observed in heavy metals (Pb, Cd). Our results indicate that elemental variability, especially that of Mg and Sr, is dominated by the properties of the crystal lattice. The inconsistent variability of trace element concentrations between species and within single populations supports the important role of species-specific biological control of the biomineralization process and indicates that environmental factors have a significant influence on the incorporation of trace elements into the shells.


Sign in / Sign up

Export Citation Format

Share Document