secchi depth
Recently Published Documents


TOTAL DOCUMENTS

205
(FIVE YEARS 64)

H-INDEX

28
(FIVE YEARS 6)

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 159
Author(s):  
Horacio Ernesto Zagarese ◽  
Nadia R. Diovisalvi ◽  
María de los Ángeles González Sagrario ◽  
Irina Izaguirre ◽  
Paulina Fermani ◽  
...  

Phytoplankton size structure has profound consequences on food-web organization and energy transfer. Presently, picocyanobacteria (size < 2 µm) represent a major fraction of the autotrophic plankton of Pampean lakes. Glyphosate is known to stimulate the development of picocyanobacteria capable of degrading the herbicide. Due to the worldwide adoption of glyphosate-resistant crops, herbicide usage has increased sharply since the mid-1990s. Unfortunately, there are very few studies (none for the Pampa region) reporting picocyanobacteria abundance before 2000. The proliferation of µm sized particles should decrease Secchi disc depth (ZSD). Therefore ZSD, conditional to chlorophyll-a, may serve as an indicator of picocyanobacteria abundance. We use generalized additive models (GAMs) to analyze a “validation” dataset consisting of 82 records of ZSD, chlorophyll-a, and picocyanobacteria abundance from two Pampean lakes surveys (2009 and 2015). In support of the hypothesis, ZSD was negatively related to picocyanobacteria after accounting for the effect of chlorophyll-a. We then fitted a “historical” dataset using hierarchical GAMs to compare ZSD conditional to chlorophyll-a, before and after 2000. We estimated that ZSD levels during 2000–2021 were, on average, only about half as deep as those during 1980–1999. We conclude that the adoption of glyphosate-resistant crops has stimulated outbreaks of picocyanobacteria populations, resulting in lower water transparency.


2021 ◽  
Vol 2 (2) ◽  
pp. 1-8
Author(s):  
Siti Aisyah ◽  
Sulastri Sulastri ◽  
Rahmi Dina ◽  
Mey Ristanti Widoretno

Small lakes are important freshwater resources to support the quality of human life. However, small lakes in the watershed are becoming threatened ecosystems because of increasing land-use changes and anthropogenic activity. The study aimed to determine characteristic physical-chemical parameters and trophic status some small lake in Ciliwung Watershed to support the sustainable management of small lakes in the Ciliwung watershed in preventing eutrophication effects.  The data was collected in April and June 2021. Measurement and analysis of water quality parameters were conducted by insitu and Laboratory. Some parameters were not in accordance with the Government Regulation number 22/2021 for class II water quality criteria (WQC), including TSS (>50 mg.L-1)., TP (>0.03 mg.L-1), COD (>25 mg.L-1) and DO (<3 mg.L-1), especially for Lake Sunter and Lake Cincin.There are two groups of lakes based on water quality and trophic status. Lake Telaga Warna Lake Cikaret, and Lake Cilodong were classified as eutrophic while lake Sunter and Lake Cincin were classified as hypereutrophic lake Lake Telaga Warna, Lake Cikaret, and Lake Cilodong, located at the upper and middle watershed, are eutrophic, characterized by deeper bottom and higher Secchi depth. At the lower watershed, Lake Sunter and Lake Cincin are hypereutrophic characterized by higher nutrients (TN and TP), COD, temperature, conductivity, salinity, and TDS. The downstream area was a densely populated area that contributed high pollution from upstream and middle of Ciliwung watershed.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12584
Author(s):  
Rafał Chmara ◽  
Eugeniusz Pronin ◽  
Józef Szmeja

Background This study aims to compare variation in a range of aquatic macrophyte species leaf traits into three carbon acquisition groups: HCO3−, free CO2 and atmospheric CO2. Methods The leaf functional traits were measured for 30 species from 30 softwater lakes. Macrophyte species were classified into (1) free CO2, (2) atmospheric CO2 and (3) bicarbonate HCO3− groups. In each lake we collected water samples and measured eight environmental variables: depth, Secchi depth, photosynthetically active radiation (PAR), pH of water, conductivity, calcium concentration, total nitrogen and total phosphorus. In this study we applied the RLQ analysis to investigate the relationships between species functional traits (Q) and their relationship with environmental variables (R) constrained by species abundance (L). Results The results showed that: (1) Aquatic macrophytes exhibited high leaf trait variations as a response to different inorganic carbon acquisition; (2) Traits of leaves refer to the acquisition of carbon for photosynthesis and serve to maximise this process; (3) In the wide softwater habitat, macrophyte species exhibited an extreme range of leaf economic spectrum (leaf area, leaf dry weight and specific leaf area) and wide range of shape trait expressed as circularity; (4) Macrophyte leaf traits are the result of adaptation to carbon acquisition in ambient environment.


2021 ◽  
Vol 13 (23) ◽  
pp. 13299
Author(s):  
Richard D. Mahoney ◽  
Jeffrey L. Beal ◽  
Dakota M. Lewis ◽  
Geoffrey S. Cook

Globally coastal habitats are experiencing degradation and threatening the production of critical ecosystem services such as shoreline stabilization, water filtration, and nursery grounds for marine fauna. To combat the loss of these ecosystem services, resource managers are actively restoring coastal habitats. This study compares samples collected from non-restored sites, sites restored in 2011, and sites that underwent restoration in 2019. Restoration sites are impacted wetlands with high elevation mounds that were leveled to increase the areal extent of intertidal habitats, enabling the recruitment of intertidal flora and fauna. Fyke nets were used to sample nekton within the upper intertidal zone. To quantify restoration success, nekton abundance, biomass, diversity, and indicator species were quantified. Sites restored in 2011 had a greater abundance compared to non-restored sites. Common snook, clown gobies, silversides, juvenile mullet, and Gulf killifishes were indicator species at successfully restored sites, while salinity, site type, and Secchi depth played important roles in predicting abundance and diversity. These findings are consistent with recent studies suggesting it can take years to see quantifiable differences in nekton communities following habitat restoration. Additionally, this work provides new insight regarding the benefits of restoring coastal wetland elevation to maximize intertidal habitat, thereby positively impacting nekton communities.


2021 ◽  
Author(s):  
Isabella Sanseverino ◽  
Patrizia Pretto ◽  
Diana Conduto António ◽  
Armin Lahm ◽  
Chiara Facca ◽  
...  

AbstractToxic cyanobacterial blooms represent a natural phenomenon caused by a mass proliferation of photosynthetic prokaryotic microorganisms in water environments. Bloom events have been increasingly reported worldwide and their occurrence can pose serious threats to aquatic organisms and human health. In this study, we assessed the microbial composition, with a focus on Cyanobacteria, in Lake Varese, a eutrophic lake located in northern Italy. Water samples were collected and used for obtaining a 16S-based taxonomic profile and performing a shotgun sequencing analysis. The phyla found to exhibit the greatest relative abundance in the lake included Proteobacteria, Cyanobacteria, Actinobacteriota and Bacteroidota. In the epilimnion and at 2.5 × Secchi depth, Cyanobacteria were found to be more abundant compared to the low levels detected at greater depths. The blooms appear to be dominated mainly by the species Lyngbya robusta, and a specific functional profile was identified, suggesting that distinct metabolic processes characterized the bacterial population along the water column. Finally, analysis of the shotgun data also indicated the presence of a large and diverse phage population.


2021 ◽  
Author(s):  
Jr-Lin Lin ◽  
Arthur Karangan ◽  
Ying Min Huang ◽  
Shyh-Fang Kang

Abstract Carlson trophic state index (CTSI) has been commonly adopted to assess the eutrophication potential of reservoirs or lakes in water quality management. This study aims to analyze the influencing factors of CTSI-based eutrophication by using Pearson correlation analysis and principal component analysis (PCA) with long-term data from 2008 to 2019 on 21 drinking water reservoirs in Taiwan. The trophic state index (TSI) deviation indicates that most drinking water reservoirs in Taiwan, around 45.5% of statistical data fall into non-algal turbidity with surplus phosphorus, especially in the spring and winter season. Besides, there are about 78 % of total collected data show that TSI (Chl-a) is less than TSI (SD) due to the small particulate predominance. On the other hand, three TSI variables (Secchi depth (SD), total phosphorus (TP) and chlorophyll-a (Chl-a)) of CTSI exhibits insignificant correlation to each other in most cases. At such a condition, the probability of eutrophication (TSI>50) based on TSI (SD) is 63%, while it is only as low as 20% based on TSI (TP) and TSI (Chl-a). The influencing factors of eutrophication variables by suspended solids (SS) composition and turbidity have shown that the SD is strongly influenced by non-algal SS. The deviations of three TSI have shown that the highest algae-induced eutrophication potential occurs in the summer season. In addition, the TP is the most significant loading factor of algae-induced eutrophication for drinking water reservoirs. It is concluded that the CTSI has limited applicability to identify the trophic status of drinking water reservoirs in Taiwan in the presence of sustainable non-algal turbidity comparative Chl-a that completely represents algal growth potential (AGP).


2021 ◽  
Vol 18 (3) ◽  
pp. 49-57
Author(s):  
Smriti Gurung ◽  
Babi Kumar Kafle ◽  
Bed Mani Dahal ◽  
Milina Sthapit ◽  
Nani Raut ◽  
...  

Eutrophication is one of the growing environmental concerns and is affecting and compromising freshwater bodies across the world making the trophic status assessment of water bodies crucial for their restoration and sustainable use. This paper describes the trophic status of Lake Phewa and Kulekhani Reservoir from Nepal. Sampling was conducted during October 2017 (post-monsoon), April 2018 (Pre-monsoon), July 2018 (Monsoon) and February 2019 (Winter). Trophic State Index (TSI) as given by Carlson (1977) and Trophic State Index Deviation given by Carlson (1991) were estimated to assess trophic status and deviations between the Trophic State Indices. One-way analysis of variance showed significant seasonal variation (p < 0.05) in Secchi depth, total phosphorus (TP), TSI in both the water bodies. Both the water bodies were classified as eutrophic during pre-monsoon and post-monsoon, and hypereutrophic during the monsoon indicating the increased flow of allochthonous inputs from their respective catchments. Non-algal turbidity was found to be the limiting factor for productivity. There is a need for sustainable watershed management in order to reduce the nutrients runoff and accumulation in the water bodies.


Sign in / Sign up

Export Citation Format

Share Document