scholarly journals Satellite retrieval of aerosol combined with assimilated forecast

2021 ◽  
Vol 21 (3) ◽  
pp. 1797-1813
Author(s):  
Mayumi Yoshida ◽  
Keiya Yumimoto ◽  
Takashi M. Nagao ◽  
Taichu Y. Tanaka ◽  
Maki Kikuchi ◽  
...  

Abstract. We developed a new aerosol satellite retrieval algorithm combining a numerical aerosol forecast. In the retrieval algorithm, the short-term forecast from an aerosol data assimilation system was used as an a priori estimate instead of spatially and temporally constant values. This method was demonstrated using observation of the Advanced Himawari Imager onboard the Japan Meteorological Agency's geostationary satellite Himawari-8. Overall, the retrieval results incorporated strengths of the observation and the model and complemented their respective weaknesses, showing spatially finer distributions than the model forecast and less noisy distributions than the original algorithm. We validated the new algorithm using ground observation data and found that the aerosol parameters detectable by satellite sensors were retrieved more accurately than an a priori model forecast by adding satellite information. Further, the satellite retrieval accuracy was improved by introducing the model forecast instead of the constant a priori estimates. By using the assimilated forecast for an a priori estimate, information from previous observations can be propagated to future retrievals, leading to better retrieval accuracy. Observational information from the satellite and aerosol transport by the model are incorporated cyclically to effectively estimate the optimum field of aerosol.

2020 ◽  
Author(s):  
Mayumi Yoshida ◽  
Keiya Yumimoto ◽  
Takashi M. Nagao ◽  
Taichu Tanaka ◽  
Maki Kikuchi ◽  
...  

Abstract. We developed a new aerosol retrieval algorithm combining a numerical aerosol forecast. In the retrieval algorithm, the short-term forecast from an aerosol data assimilation system was used for a priori estimate instead of spatially and temporally constant values. This method was demonstrated using the Advanced Himawari Imager onboard the Japan Meteorological Agency’s geostationary satellite Himawari-8, and the results showed spatially finer distributions than the model forecast and less noisy distributions than the original algorithm. We validated the new algorithm using ground observation data and found that the aerosol parameters detectable by satellite sensors were retrieved more accurately than a priori model forecast by adding satellite information. Moreover, the retrieval accuracy was improved by using the model forecast as compared with using constant a priori estimates. By using the assimilated forecast for a priori estimate, information from previous observations can be propagated to future retrievals, thereby leading to better retrieval accuracy. Observational information from the satellite and aerosol transport by the model is incorporated cyclically to effectively estimate the optimum field of aerosol.


2017 ◽  
Author(s):  
Birthe Marie Steensen ◽  
Arve Kylling ◽  
Nina Iren Kristiansen ◽  
Michael Schulz

Abstract. Significant improvements in the way we can observe and model volcanic ash clouds have been obtained since the 2010 Eyjafjallajökull eruption. One major development has been data assimilation techniques, which aim to bring models in closer agreement to satellite observations and reducing the uncertainties for the ash emission estimate. Still, questions remains to which degree the forecasting capabilities are improved by inclusion of such techniques are and how these improvements depend on the data input. This study exploits how different satellite data and different uncertainty assumptions of the satellite and a priori emissions affect the calculated volcanic ash emission estimate, which is computed by an inversion method that couples the satellite and a priori emissions with dispersion model data. Two major ash episodes over four days in April and May of the 2010 Eyjafjallajökull eruption are studied. Specifically, inversion calculations are done for four different satellite data sets with different size distribution assumptions in the retrieval. A reference satellite data set is chosen and the range between the minimum and maximum 4 day average load of hourly retrieved ash is 121 % in April and 148 % in May, compared to the reference. The corresponding a posteriori maximum and minimum emission sum found for these four satellite retrievals range from 26 % and 47 % of the a posteriori reference estimate for the same two periods. Varying the assumptions made in the satellite retrieval therefore translates into uncertainties in the calculated emissions and the modelled ash column loads. By further exploring the weighting of uncertainties connected to a priori emissions and the other-than-size uncertainties in the satellite data, the uncertainty in the a priori estimate is found to have an order of magnitude more impact on the a posteriori solution compared to the other-than-size uncertainties in the satellite. Part of this is explained by a too high a priori estimate used in this study that is reduced by around half in the a posteriori reference estimate. Setting large uncertainties connected to both a priori and satellite input data is shown to compensate each other. Because of this an inversion based emission estimate in a forecasting setting needs well tested and considered assumptions on uncertainties for the a priori emission and satellite data. The quality of using the inversion in a forecasting environment is tested by adding gradually, with time, more observations to improve the estimated height versus time evolution of Eyjafjallajökull ash emissions. We show that the initially too high a priori emissions are reduced effectively when using just 12 hours of satellite observations. More satellite observations (> 12 h), in the Eyjafjallajökull case, place the volcanic injection at higher altitudes. Adding additional satellite observations (> 36 h) changes the a posteriori emissions to only a small extent for May and minimal for the April period, because the ash is dispersed and transported effectively out of the domain after 1–2 days. A best-guess emission estimate for the forecasting period was constructed by averaging the last 12 hours of the a posteriori emission. Using this emission for a forecast simulation performs better especially compared to model simulations with no further emissions over the forecast period in the case of a continued volcanic eruption activity. Because of undetected ash in the satellite retrieval and diffusion in the model, the forecast simulations generally contain more ash than the observed fields and the model ash is more spread out. Overall, using the a posteriori emissions in our model reduces the uncertainties connected to both the satellite observations and the a priori estimate to perform a more confident forecast in both amount of ash released and emission heights.


2002 ◽  
Vol 7 (8) ◽  
pp. 423-452
Author(s):  
Marcelo Montenegro

The higher order quasilinear elliptic equation−Δ(Δp(Δu))=f(x,u)subject to Dirichlet boundary conditions may have unique and regular positive solution. If the domain is a ball, we obtain a priori estimate to the radial solutions via blowup. Extensions to systems and general domains are also presented. The basic ingredients are the maximum principle, Moser iterative scheme, an eigenvalue problem, a priori estimates by rescalings, sub/supersolutions, and Krasnosel'skiĭ fixed point theorem.


Author(s):  
Л.М. Энеева

В работе исследуется обыкновенное дифференциальное уравнение дробного порядка, содержащее композицию дробных производных с различными началами, с переменным потенциалом. Рассматриваемое уравнение выступает модельным уравнением движения во фрактальной среде. Для исследуемого уравнения доказана априорная оценка решения смешанной двухточечной краевой задачи. We consider an ordinary differential equation of fractional order with the composition of leftand right-sided fractional derivatives, and with variable potential. The considered equation is a model equation of motion in fractal media. We prove an a priori estimate for solutions of a mixed two-point boundary value problem for the equation under study.


2018 ◽  
Vol 64 (4) ◽  
pp. 591-602
Author(s):  
R D Aloev ◽  
M U Khudayberganov

We study the difference splitting scheme for the numerical calculation of stable solutions of a two-dimensional linear hyperbolic system with dissipative boundary conditions in the case of constant coefficients with lower terms. A discrete analog of the Lyapunov function is constructed and an a priori estimate is obtained for it. The obtained a priori estimate allows us to assert the exponential stability of the numerical solution.


Sign in / Sign up

Export Citation Format

Share Document