scholarly journals Linkages between the atmospheric transmission originating from the North Atlantic Oscillation and persistent winter haze over Beijing

2021 ◽  
Vol 21 (24) ◽  
pp. 18573-18588
Author(s):  
Muyuan Li ◽  
Yao Yao ◽  
Ian Simmonds ◽  
Dehai Luo ◽  
Linhao Zhong ◽  
...  

Abstract. In this study, the persistent winter haze that occurred over Beijing during 1980 to 2016 is examined using reanalysis and station data. On both interannual and daily-to-weekly timescales, the winter haze weather in Beijing is found to be associated with a pronounced atmospheric teleconnection pattern from the North Atlantic to Eurasia (Beijing). A positive western-type North Atlantic Oscillation (WNAO+) phase and a positive East Atlantic/West Russia (EA/WR+) phase are observed as part of this teleconnection pattern (an arched wave train). This study focuses on the role of the WNAO pattern, because the WNAO+ pattern acts as the origin of the atmospheric transmission, 8–10 d before the persistent haze events. Further analyses reveal that the WNAO+ pattern can increase the number of haze days and persistent haze events on interannual and daily-to-weekly timescales. Specifically, strong WNAO+ winters (above the 95th percentile) can increase the number of haze days and persistent haze events by 26.0 % and 42.3 %, respectively. In addition, a high WNAO index for the 5 d average (above the 95th percentile) predicts a 16.9 % increase in the probability of haze days on Day 8 and a higher proportion of persistent haze days compared with an unknown WNAO state. Thus, the WNAO+ pattern is as a necessary prior background condition for the formation of the wave train and is a skillful predictor for persistent hazy weather. Corresponding to the WNAO+ pattern, intensified zonal wind and a north–south sea surface temperature tripolar mode over the North Atlantic also appear before persistent haze events on the daily-to-weekly timescale. On the interannual timescale, winters with a greater number of persistent haze days are also associated with a tripolar sea surface temperature (SST) mode over the North Atlantic that is situated farther northward.

2011 ◽  
Vol 75 (3) ◽  
pp. 571-575 ◽  
Author(s):  
José C. Báez ◽  
Juan J. Bellido ◽  
Francisco Ferri-Yáñez ◽  
Juan J. Castillo ◽  
Juan J. Martín ◽  
...  

2021 ◽  
Author(s):  
Muyuan Li ◽  
Yao Yao ◽  
Ian Simmonds ◽  
Dehai Luo ◽  
Linhao Zhong ◽  
...  

Abstract. The persistent winter haze episodes that occurred in Beijing over the period 1980 to 2016 are examined based on both reanalysis and station data. On both interannual and intra-seasonal timescales, winter haze weather in Beijing is found to be associated with a significant atmospheric teleconnection pattern from the North Atlantic to Eurasia (Beijing). A positive North Atlantic Oscillation (NAO+) phase and a positive East Atlantic/West Russia (EA/WR+) phase can be observed as part of this teleconnection pattern (or an arched wave train). This study focuses mainly on the role of the NAO+ pattern, because the NAO index shows a closer relationship with winter haze frequency, especially after 1999, and the NAO+ pattern leads to the formation of persistent haze events over a longer period of time. Composite analyses show that a robust and consistent daily evolution of the wave train originates from an NAO+ pattern over the North Atlantic 8–10 days prior to the persistent haze events. The wave train continues propagating energy downstream, which leads to the formation and maintenance of a high-pressure center over northeast China, thus creating favorable meteorological conditions for the persistent haze events in Beijing. Thus, the NAO+ pattern is also an essential preceding background for the formation of the wave train, which can be treated as a potential predictor for persistent hazy weather. Corresponding to the NAO+ pattern, a tripolar sea surface temperature mode and intensified zonal wind over the North Atlantic also serve as prior signals for the persistent haze events. In addition, the propagation of the wave train is also associated with preceding significant positive sea ice concentration anomalies in the Barents–Kara Sea. Moreover, comparative analysis demonstrates that NAO+ winters are more advantageous to the formation and maintenance of winter haze weather in Beijing rather than NAO− winters.


Author(s):  
M.N Tsimplis ◽  
A.G.P Shaw ◽  
R.A Flather ◽  
D.K Woolf

The thermosteric contribution of the North Atlantic Oscillation (NAO) to the North Sea sea-level for the winter period is investigated. Satellite sea surface temperature as well as in situ measurements are used to define the sensitivity of winter water temperature to the NAO as well as to determine the trends in temperature. The sea surface temperature sensitivity to the NAO is about 0.85 °C per unit NAO, which results in thermosteric sea-level changes of about 1–2 cm per unit NAO. The sensitivity of sea surface temperatures to the NAO is strongly time-dependent. Model data from a two-dimensional hydrodynamic tide+surge model are used in combination with the estimated thermosteric anomalies to explain the observed sea-level changes and, in particular, the sensitivity of the datasets to the NAO variability. The agreement between the model and the observed data is improved by the inclusion of the thermosteric effect.


The Holocene ◽  
2020 ◽  
Vol 31 (1) ◽  
pp. 3-15 ◽  
Author(s):  
Lisa C Orme ◽  
Arto Miettinen ◽  
Marit-Solveig Seidenkrantz ◽  
Kirsi Tuominen ◽  
Christof Pearce ◽  
...  

In recent decades the surface water temperature and salinity in the Labrador Sea have been influenced by atmospheric circulation patterns, such as the North Atlantic Oscillation (NAO), as well as a trend to increasingly warm atmospheric temperatures in recent years. These changes are concerning, given the important role that temperature and salinity have on deep convection in the Labrador Sea. Yet, due to the shortness of available records, the long-term patterns of climate variability in the region are not clear. Here, a diatom-based reconstruction of summer sea-surface temperature (SST) developed from Trinity Bay, Newfoundland, provides insight into variations of SST since 7.2 cal ka BP in the southwestern Labrador Sea. The results show that the Holocene Thermal Maximum (HTM) lasted until c. 5.2 cal ka BP, which was followed by a gradual cooling trend overprinted by centennial temperature fluctuations of 1–2°C. Long-term cooling was likely the result of declining Northern Hemisphere orbital summer insolation, potentially amplified by long-term changes in surface and bottom water salinity, which led to a gradual reduction in the stratification of the water column. Centennial fluctuations in temperature vary in-phase with reconstructed variations in the NAO, supporting a consistent relationship between atmospheric circulation and SST over centennial-millennial timescales. Other factors influencing the SST variability may have been solar forcing during the mid-Holocene and variations in the strength of the subpolar gyre during the late-Holocene. The most prolonged cool period at 5.2–4.1 cal ka BP coincides with sharply reduced salinity in the Labrador Sea and a weakening of deep ventilation in the northeast Atlantic, highlighting a period with altered ocean surface conditions and circulation across the northern North Atlantic.


Sign in / Sign up

Export Citation Format

Share Document