atmospheric teleconnection
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 36)

H-INDEX

17
(FIVE YEARS 3)

2021 ◽  
Vol 14 (12) ◽  
pp. 7439-7457
Author(s):  
Mohammad Reza Heidari ◽  
Zhaoyang Song ◽  
Enrico Degregori ◽  
Jörg Behrens ◽  
Hendryk Bockelmann

Abstract. ​​​​​​​The scalability of the atmospheric model ECHAM6 at low resolution, as used in palaeoclimate simulations, suffers from the limited number of grid points. As a consequence, the potential of current high-performance computing architectures cannot be used at full scale for such experiments, particularly within the available domain decomposition approach. Radiation calculations are a relatively expensive part of the atmospheric simulations, taking up to approximately 50 % or more of the total runtime. This current level of cost is achieved by calculating the radiative transfer only once in every 2 h of simulation. In response, we propose extending the available concurrency within the model further by running the radiation component in parallel with other atmospheric processes to improve scalability and performance. This paper introduces the concurrent radiation scheme in ECHAM6 and presents a thorough analysis of its impact on the performance of the model. It also evaluates the scientific results from such simulations. Our experiments show that ECHAM6 can achieve a speedup of over 1.9× using the concurrent radiation scheme. By performing a suite of stand-alone atmospheric experiments, we evaluate the influence of the concurrent radiation scheme on the scientific results. The simulated mean climate and internal climate variability by the concurrent radiation generally agree well with the classical radiation scheme, with minor improvements in the mean atmospheric circulation in the Southern Hemisphere and the atmospheric teleconnection to the Southern Annular Mode. This empirical study serves as a successful example that can stimulate research on other concurrent components in atmospheric modelling whenever scalability becomes challenging.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Shinji Matsumura ◽  
Koji Yamazaki ◽  
Kazuyoshi Suzuki

AbstractGreenland warming and ice loss have slowed down since the early 2010s, in contrast to the rest of the Arctic region. Both natural variability and anthropogenic forcing contribute to recent Greenland warming by reducing cloud cover and surface albedo, yet most climate models are unable to reasonably simulate the unforced natural variability. Here we show that a simplified atmospheric circulation model successfully simulates an atmospheric teleconnection from the tropics towards Greenland, which accounts for Greenland cooling through an intensified cyclonic circulation. Synthesis from observational analysis and model experiments indicate that over the last decade, more central Pacific El Niño events than canonical El Niño events have generated the atmospheric teleconnection by shifting the tropical rainfall zone poleward, which led to an intensified cyclonic circulation over Greenland. The intensified cyclonic circulation further extends into the Arctic Ocean in observations, whereas the model does not show a direct remote forcing from the tropics, implying the contribution of an indirect atmospheric forcing. We conclude that the frequent occurrence of central Pacific El Niño events has played a key role in the slow-down of Greenland warming and possibly Arctic sea-ice loss.


2021 ◽  
pp. 1-66
Author(s):  
Wei Zhao ◽  
Shangfeng Chen ◽  
Hengde Zhang ◽  
Jikang Wang ◽  
Wen Chen ◽  
...  

AbstractThe Beijing-Tianjin-Hebei (BTH) region has encountered increasingly severe and frequent haze pollution during recent decades. This study reveals that the El Niño–Southern Oscillation (ENSO) has distinctive impacts on interannual variations of haze pollution over BTH in early and late winters. The impact of ENSO on the haze pollution over the BTH is strong in early winter, but weak in late winter. In early winter, ENSO-related sea surface temperature anomalies generate double-cell Walker circulation anomalies, with upward motion anomalies over the tropical central-eastern Pacific and tropical Indian Ocean, and downward motion anomalies over tropical western Pacific. The ascending motion and enhanced atmospheric heating anomalies over the tropical Indian Ocean trigger atmospheric teleconnection propagating from North Indian Ocean to East Asia, and result in generation of an anticyclonic anomaly over northeast Asia. The associated southerly anomalies to the west side lead to more serious haze pollution via reducing surface wind speed and increasing low-level humidity and thermal inversion. Strong contribution of the Indian Ocean heating anomalies to the formation of the anticyclonic anomaly over northeast Asia in early winter can be confirmed by atmospheric model numerical experiments. In late winter, vertical motion and precipitation anomalies are weak over tropical Indian Ocean related to ENSO. As such, ENSO cannot induce clear anticyclonic anomaly over northeast Asia via atmospheric teleconnection, and thus has a weak impact on the haze pollution over BTH. Further analysis shows that stronger ENSO-induced atmospheric heating anomalies over tropical Indian Ocean in early winter is partially due to higher mean SST and precipitation there.


2021 ◽  
pp. 1-35
Author(s):  
Seon Tae Kim ◽  
Yun-Young Lee ◽  
Ji-Hyun Oh ◽  
A-Young Lim

AbstractThis study presents the ability of seasonal forecast models to represent the observed mid-latitude teleconnection associated with El Niño-Southern Oscillation (ENSO) events over the North American region for the winter months of December, January, and February. Further, the impacts of the associated errors on regional forecast performance for winter temperatures are evaluated, with a focus on one-month lead time forecasts. In most models, there exists a strong linear relationship of temperature anomalies with ENSO and, thus, a clear anomaly sign separation between both ENSO phases persists throughout the winter, whereas linear relationships are weak in observations. This leads to a difference in the temperature forecast performance between the two ENSO phases. Forecast verification scores show that the winter season warming (cooling) events during El Niño in northern (southern) North America are more correctly forecasted in the models than the cooling (warming) events during La Niña. One possible reason for this result is that the remote atmospheric teleconnection pattern in the models is almost linear or symmetric between the El Niño and La Niña phases. The strong linear atmospheric teleconnection appears to be associated with the models’ failure in simulating the westward shift of the tropical Pacific rainfall response for the La Niña phase compared to that for the El Niño phase, which is attributed to the warmer central tropical Pacific in the models. This study highlights that understanding how the predictive performance of climate models varies according to El Niño or La Niña phases is very important when utilizing predictive information from seasonal forecast models.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Liping Li ◽  
Wenjie Ni ◽  
Yige Li ◽  
Dong Guo ◽  
Hui Gao

The frequency distribution of winter extreme cold events (ECEs) in North China and the influences of mid-latitude sea surface temperature anomalies (SSTAs) in the Northern Hemisphere are studied. The results show that (1) the frequency of single station ECEs (SSECEs) in winter increases from southeast to northwest, with a decrease before 2008 and then a significant increase. This trend abrupt change occurs in late winter. (2) When the SST in the North Pacific shows an “El-Niño-like” anomaly in winter, it triggers the negative Arctic Oscillation (−AO), positive Pacific North America (+PNA), and positive Eurasia Pacific (+EUP) atmospheric teleconnection patterns in the mid-lower troposphere. As a result, the ridge to south of Lake Baikal becomes stronger. Meanwhile, SST in the North Atlantic shows a “reversed C” negative anomaly with North Atlantic Oscillation (+NAO), (+PNA)-like and (+EUP)-like patterns, and the ridge to southwest of Lake Baikal becomes stronger. Furthermore, both cause the Siberian High to become weaker in the north and stronger in the south. With the weaker East Asia subtropical jet and stronger East Asia winter monsoon, these factors lead to a significant increase of SSECE frequency in North China. (3) When the SSTA shows an “El Niño-like” developing pattern from summer to autumn in the North Pacific, the winter SSECE frequency will be higher. (4) The purported mechanism between the mid-latitude SSTA and the winter SSECE frequency in North China is the following: the SSTA in the North Pacific in summer and autumn excites atmospheric teleconnection wave trains, and the Atlantic stores these anomaly signals. In winter, the interaction between the SSTAs in the North Pacific and the North Atlantic enhances the Eurasian teleconnection wave train. With the upstream fluctuation energy dispersing downstream, the wave train centers move eastward with the season, resulting in an increase in the frequency of the SSECEs.


Author(s):  
Jong-Suk Kim ◽  
Shaleen Jain ◽  
Taesam Lee

Abstract Changes in the flow regime in snowmelt- and ice-dominated rivers have important implications for navigation, flood hazard, recreation, and ecosystems. We investigated recent changes in the high flows of the St. John River basin in Maine, USA, with a view to quantify changes in high-flow characteristics, as well as extreme event estimates. The results analyzed herein demonstrate shifts in springtime streamflow as well as in emergent wintertime (January–February) streamflow over the past four decades. A Poisson-based regression approach was applied to develop a model for the diagnosis of weather–climate linkage. The sensitivity of episodic warm weather events to the negative phase of the Tropical–Northern Hemisphere (TNH) atmospheric teleconnection pattern is evident. Although a modest sample size of historical data on the weather–climate linkage imposes a limit in terms of reliability, the approach presented herein shows a modest role of the TNH pattern, in response to the warm phase of El Niño/Southern Oscillation, as one of the factors that contribute to hydroclimate variability in the St. John River basin. This diagnostic study sought to investigate the changes in the wintertime streamflow regime and the relative linkages with short-term concurrent weather events, as well as large-scale climatic linkages. This improved an understanding of hydrological extremes within a climatological context and offers new knowledge to inform water resources planning and decision-making.


Sign in / Sign up

Export Citation Format

Share Document