atmospheric transmission
Recently Published Documents


TOTAL DOCUMENTS

386
(FIVE YEARS 61)

H-INDEX

31
(FIVE YEARS 5)

Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 44
Author(s):  
Xuan Deng ◽  
Yueming Wang ◽  
Guicheng Han ◽  
Tianru Xue

Aiming at the problem wherein temperature inversion accuracy is unstable due to the major differences in atmospheric transmittance under various observation paths, a method for measuring radiation characteristics of an aircraft engine’s hot parts and skin using a cooled middle-wave infrared camera is proposed. Based on the analysis of the aircraft’s infrared radiation characteristics, the atmospheric transmission model of any observation path was revised, the absolute radiation correction model was established, and the temperature inversion equation was calculated. Then, we used the quasi-Newton method to calculate the skin temperature and discussed uncertainty sources. After the theoretical study, an outfield test was carried out. A middle-wave infrared camera with a wavelength of 3.7–4.8 μm was applied to the actual experimental observation of the turbofan civil aviation aircraft. The ground observation distance was 15 km, and the flying height was 3 km. When implementing temperature inversion with the method presented in this paper, the surface temperature of the aircraft engine hot parts was 381 K, the correction uncertainty was ±10 K, the surface temperature of the skin was 296 K, and the correction uncertainty was ±6 K. As the experiment showed, the method in this paper can effectively implement infrared target temperature inversion and provide a reference for the quantification of infrared data.


2022 ◽  
Vol 9 ◽  
Author(s):  
Yingjie Shi ◽  
Enlai Guo ◽  
Lianfa Bai ◽  
Jing Han

Atmospheric scattering caused by suspended particles in the air severely degrades the scene radiance. This paper proposes a method to remove haze by using a neural network that combines scene polarization information. The neural network is self-supervised and online globally optimization can be achieved by using the atmospheric transmission model and gradient descent. Therefore, the proposed method does not require any haze-free image as the constraint for neural network training. The proposed approach is far superior to supervised algorithms in the performance of dehazing and is highly robust to the scene. It is proved that this method can significantly improve the contrast of the original image, and the detailed information of the scene can be effectively enhanced.


2021 ◽  
Vol 21 (24) ◽  
pp. 18573-18588
Author(s):  
Muyuan Li ◽  
Yao Yao ◽  
Ian Simmonds ◽  
Dehai Luo ◽  
Linhao Zhong ◽  
...  

Abstract. In this study, the persistent winter haze that occurred over Beijing during 1980 to 2016 is examined using reanalysis and station data. On both interannual and daily-to-weekly timescales, the winter haze weather in Beijing is found to be associated with a pronounced atmospheric teleconnection pattern from the North Atlantic to Eurasia (Beijing). A positive western-type North Atlantic Oscillation (WNAO+) phase and a positive East Atlantic/West Russia (EA/WR+) phase are observed as part of this teleconnection pattern (an arched wave train). This study focuses on the role of the WNAO pattern, because the WNAO+ pattern acts as the origin of the atmospheric transmission, 8–10 d before the persistent haze events. Further analyses reveal that the WNAO+ pattern can increase the number of haze days and persistent haze events on interannual and daily-to-weekly timescales. Specifically, strong WNAO+ winters (above the 95th percentile) can increase the number of haze days and persistent haze events by 26.0 % and 42.3 %, respectively. In addition, a high WNAO index for the 5 d average (above the 95th percentile) predicts a 16.9 % increase in the probability of haze days on Day 8 and a higher proportion of persistent haze days compared with an unknown WNAO state. Thus, the WNAO+ pattern is as a necessary prior background condition for the formation of the wave train and is a skillful predictor for persistent hazy weather. Corresponding to the WNAO+ pattern, intensified zonal wind and a north–south sea surface temperature tripolar mode over the North Atlantic also appear before persistent haze events on the daily-to-weekly timescale. On the interannual timescale, winters with a greater number of persistent haze days are also associated with a tripolar sea surface temperature (SST) mode over the North Atlantic that is situated farther northward.


MAUSAM ◽  
2021 ◽  
Vol 51 (4) ◽  
pp. 349-358
Author(s):  
R. R. SHENDE ◽  
V. R. CHIVATE

Radiation measurements are being carried out at Pune since 1957. The radiation data for the period 1986-90 are studied here with reference to general sky condition and rainfall distribution. Global irradiances show a decrease of about 5 per cent over the last four decades, The diffuse irradiation contributes about 23 per cent to the global irradiance during winter months, Its proportion increases to more than 70 per cent during the monsoon period. The specific rainfall distribution affects both global and diffuse irradiances but in opposite directions, The diffuse irradiance shows increases as the atmospheric transmission decreases, However, the changes found have not become statistically highly significant as yet.


2021 ◽  
Vol 13 (18) ◽  
pp. 3739
Author(s):  
Jong Uk Park ◽  
Hyung-Chul Lim ◽  
Ki-Pyoung Sung ◽  
Mansoo Choi

Two-way Laser Time Transfer (TLTT) using the Ajisai satellite has been considered as a more accurate and stable time transfer technique than existing methods; TLTT requires the kHz laser pulses to decrease the systematic restrictions for TLTT realization. However, because of the low energy of the kHz laser pulses as well as the low cross section due to the small size of the Ajisai reflecting mirror, the link budget is an important issue to establish the TLTT link between two ground stations. In this study, the TLTT link budget is investigated to find the optimal laser pulse energy via analysis of geometric effects using 30 days of orbital data of the Ajisai satellite from 29 March 2021 within a ground network consisting of four stations located in three countries. The geometric configuration reduces the TLTT link budget by three orders of magnitude due to free space loss, atmospheric transmission, and effective cross section; then, the pulse energy is required to be much higher than laser ranging to the Ajisai satellite. It is shown from the simulation that a few tens of mJ level of pulse energy at the transmitting station is quite enough for TLTT realization.


2021 ◽  
Author(s):  
Tianzhen Ju ◽  
Zhuohong Liang ◽  
Wenjun Liu ◽  
Bingnan Li ◽  
Ruirui Huang ◽  
...  

Abstract Based on satellite remote sensing data acquired by the Ozone Monitoring Instrument (OMI), this study used pixel space analysis, a coefficient of variation, stability analysis, and an atmospheric transmission model to determine the concentration of tropospheric ozone (O3), NO2, HCHO, and SO2 columns in Lanzhou from 2010 to 2019. A series of analyses were carried out on the temporal and spatial distribution of concentration, influencing factors and atmospheric transmission path. The results show that the air pollutants in this area present multi-dimensional characteristics and have a complex spatial distribution. In terms of inter-annual changes, in addition to the increase in the concentration of the HCHO column, the ozone, NO2, and SO2 column concentrations have all decreased over time. In terms of monthly average changes, these four pollutants reached their maximum values in April, December, June, and January, respectively. These four types of pollution had a strong spatial correlation, among which HCHO and SO2 had a significant positive correlation, with a correlation coefficient of 0.76. Many factors affect the Atmospheric Compound Pollution in Lanzhou. Among them, pollutants are closely related to urbanization and to the activities of coal-burning industries. Moreover, temperature, precipitation, and sunshine also have certain effects on air quality. The proliferation of pollutants in Gansu Province was one of the sources of pollutants in Lanzhou, while long-distance transportation in the atmosphere from outside the province (Qinghai, Sichuan, and Shaanxi) also exacerbated the pollution in Lanzhou.


2021 ◽  
Vol 13 (14) ◽  
pp. 2697
Author(s):  
Bo Liu ◽  
Qi Xiao ◽  
Yuhao Zhang ◽  
Wei Ni ◽  
Zhen Yang ◽  
...  

To address the problem of intelligent recognition of optical ship targets under low-altitude squint detection, we propose an intelligent recognition method based on simulation samples. This method comprehensively considers geometric and spectral characteristics of ship targets and ocean background and performs full link modeling combined with the squint detection atmospheric transmission model. It also generates and expands squint multi-angle imaging simulation samples of ship targets in the visible light band using the expanded sample type to perform feature analysis and modification on SqueezeNet. Shallow and deeper features are combined to improve the accuracy of feature recognition. The experimental results demonstrate that using simulation samples to expand the training set can improve the performance of the traditional k-nearest neighbors algorithm and modified SqueezeNet. For the classification of specific ship target types, a mixed-scene dataset expanded with simulation samples was used for training. The classification accuracy of the modified SqueezeNet was 91.85%. These results verify the effectiveness of the proposed method.


2021 ◽  
Vol 14 (5) ◽  
pp. 3909-3922
Author(s):  
Xiaoli Sun ◽  
James B. Abshire ◽  
Anand Ramanathan ◽  
Stephan R. Kawa ◽  
Jianping Mao

Abstract. The retrieval algorithm for CO2 column mixing ratio from measurements of a pulsed multi-wavelength integrated path differential absorption (IPDA) lidar is described. The lidar samples the shape of the 1572.33 nm CO2 absorption line at multiple wavelengths. The algorithm uses a least-squares fit between the CO2 line shape computed from a layered atmosphere model and that sampled by the lidar. In addition to the column-average CO2 dry-air mole fraction (XCO2), several other parameters are also solved simultaneously from the fit. These include the Doppler shift at the received laser signal wavelength, the product of the surface reflectivity and atmospheric transmission, and a linear trend in the lidar receiver's spectral response. The algorithm can also be used to solve for the average water vapor mixing ratio, which produces a secondary absorption in the wings of the CO2 absorption line under humid conditions. The least-squares fit is linearized about the expected XCO2 value, which allows the use of a standard linear least-squares fitting method and software tools. The standard deviation of the retrieved XCO2 is obtained from the covariance matrix of the fit. The averaging kernel is also provided similarly to that used for passive trace-gas column measurements. Examples are presented of using the algorithm to retrieve XCO2 from measurements of the NASA Goddard airborne CO2 Sounder lidar that were made at constant altitude and during spiral-down profile maneuvers.


Sign in / Sign up

Export Citation Format

Share Document