scholarly journals The global lightning-induced nitrogen oxides source

2007 ◽  
Vol 7 (1) ◽  
pp. 2623-2818 ◽  
Author(s):  
U. Schumann ◽  
H. Huntrieser

Abstract. The knowledge of the lightning-induced nitrogen oxides (LNOx) source is important for understanding and predicting the nitrogen oxides and ozone distributions in the troposphere and their trends, the oxidising capacity of the atmosphere, and the lifetime of trace gases destroyed by reactions with OH. This knowledge is further required for the assessment of other important NOx sources, in particular from aviation, the stratosphere, and from surface sources, and for understanding the possible feedback between climate changes and lightning. This paper reviews more then 3 decades of research. The review includes laboratory studies as well as surface, airborne and satellite-based observations of lightning and of NOx and related species in the atmosphere. Relevant data available from measurements in regions with strong LNOx influence are identified, including recent observations at midlatitudes and over tropical continents where most lightning occurs. Various methods to model LNOx at cloud scales or globally are described. Previous estimates are re-evaluated using the global annual mean flash frequency of 44±5 s−1 reported from OTD satellite data. From the review, mainly of airborne measurements near thunderstorms and cloud-resolving models, we conclude that a "typical" thunderstorm flash produces 15 (2–40)×1025 NO molecules per flash, equivalent to 250 mol NOx or 3.5 kg of N mass per flash with uncertainty factor from 0.13 to 2.7. Mainly as a result of previous global model studies for various LNOx parameterisations tested with related observations, the best estimate of the annual global LNOx nitrogen mass source and its uncertainty range is (5±3) Tg a−1 in this study. An accuracy of order 1 Tg a−1 or 20%, as necessary in particular for understanding tropical tropospheric chemistry, is still a challenging goal.

2007 ◽  
Vol 7 (14) ◽  
pp. 3823-3907 ◽  
Author(s):  
U. Schumann ◽  
H. Huntrieser

Abstract. The knowledge of the lightning-induced nitrogen oxides (LNOx) source is important for understanding and predicting the nitrogen oxides and ozone distributions in the troposphere and their trends, the oxidising capacity of the atmosphere, and the lifetime of trace gases destroyed by reactions with OH. This knowledge is further required for the assessment of other important NOx sources, in particular from aviation emissions, the stratosphere, and from surface sources, and for understanding the possible feedback between climate changes and lightning. This paper reviews more than 3 decades of research. The review includes laboratory studies as well as surface, airborne and satellite-based observations of lightning and of NOx and related species in the atmosphere. Relevant data available from measurements in regions with strong LNOx influence are identified, including recent observations at midlatitudes and over tropical continents where most lightning occurs. Various methods to model LNOx at cloud scales or globally are described. Previous estimates are re-evaluated using the global annual mean flash frequency of 44±5 s−1 reported from OTD satellite data. From the review, mainly of airborne measurements near thunderstorms and cloud-resolving models, we conclude that a "typical" thunderstorm flash produces 15 (2–40)×1025 NO molecules per flash, equivalent to 250 mol NOx or 3.5 kg of N mass per flash with uncertainty factor from 0.13 to 2.7. Mainly as a result of global model studies for various LNOx parameterisations tested with related observations, the best estimate of the annual global LNOx nitrogen mass source and its uncertainty range is (5±3) Tg a−1 in this study. In spite of a smaller global flash rate, the best estimate is essentially the same as in some earlier reviews, implying larger flash-specific NOx emissions. The paper estimates the LNOx accuracy required for various applications and lays out strategies for improving estimates in the future. An accuracy of about 1 Tg a−1 or 20%, as necessary in particular for understanding tropical tropospheric chemistry, is still a challenging goal.


2020 ◽  
Vol 20 (11) ◽  
pp. 6973-6990 ◽  
Author(s):  
Jianzhong Ma ◽  
Steffen Dörner ◽  
Sebastian Donner ◽  
Junli Jin ◽  
Siyang Cheng ◽  
...  

Abstract. Mt. Waliguan Observatory (WLG) is a World Meteorological Organization (WMO) Global Atmosphere Watch (GAW) global baseline station in China. WLG is located at the northeastern part of the Tibetan Plateau (36∘17′ N, 100∘54′ E, 3816 m a.s.l.) and is representative of the pristine atmosphere over the Eurasian continent. We made long-term ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements at WLG during the period 2012–2015. In this study, we retrieve the differential slant column densities (dSCDs) and estimate the tropospheric background mixing ratios of different trace gases, including NO2, SO2, HCHO, and BrO, using the measured spectra at WLG. Averaging of 10 original spectra is found to be an “optimum option” for reducing both the statistical error of the spectral retrieval and systematic errors in the analysis. The dSCDs of NO2, SO2, HCHO, and BrO under clear-sky and low-aerosol-load conditions are extracted from measured spectra at different elevation angles at WLG. By performing radiative transfer simulations with the model TRACY-2, we establish approximate relationships between the trace gas dSCDs at 1∘ elevation angle and the corresponding average tropospheric background volume mixing ratios. Mixing ratios of these trace gases in the lower troposphere over WLG are estimated to be in a range of about 7 ppt (January) to 100 ppt (May) for NO2, below 0.5 ppb for SO2, between 0.4 and 0.9 ppb for HCHO, and lower than 0.3 ppt for BrO. The chemical box model simulations constrained by the NO2 concentration from our MAX-DOAS measurements show that there is a little net ozone loss (−0.8 ppb d−1) for the free-tropospheric conditions and a little net ozone production (0.3 ppb d−1) for the boundary layer conditions over WLG during summertime. Our study provides valuable information and data sets for further investigating tropospheric chemistry in the background atmosphere and its links to anthropogenic activities.


2003 ◽  
Vol 13 (3) ◽  
pp. 187-196 ◽  
Author(s):  
Zlatko Giba ◽  
Dragoljub Grubišić ◽  
Radomir Konjević

AbstractNitrates have long been known to promote seed germination in many species, and various proposals have been made regarding the role of nitrates in this process. One hypothesis suggests a possible ecological role for nitrate, providing the seeds with a report of soil nitrogen status and the proximity of already established plants. However, nitrogen oxides (NO, NO2), which are present in the soil, also may be information carriers that indicate not only soil nitrate content, but also microbial activity and, therefore, soil quality. Because of annual variation of soil trace gas fluxes, seeds could be provided with information on seasonal and climate changes in their surroundings. Thus, nitrogen oxides would be the outer information carriers providing the seeds with integral data about many important factors required for successful germination and seedling establishment.


2011 ◽  
Vol 11 (4) ◽  
pp. 1697-1710 ◽  
Author(s):  
A. M. Fiore ◽  
H. Levy II ◽  
D. A. Jaffe

Abstract. Changing land-use and climate may alter emissions of biogenic isoprene, a key ozone (O3) precursor. Isoprene is also a precursor to peroxy acetyl nitrate (PAN) and thus affects partitioning among oxidized nitrogen (NOy) species, shifting the balance towards PAN, which more efficiently contributes to long-range transport relative to nitric acid (HNO3) which rapidly deposits. With a suite of sensitivity simulations in the MOZART-2 global tropospheric chemistry model, we gauge the relative importance of the intercontinental influence of a 20% increase in North American (NA) isoprene and a 20% decrease in NA anthropogenic emissions (nitrogen oxides (NOx), non-methane volatile organic compounds (NMVOC) and NOx + NMVOC + carbon monoxide + aerosols). The surface O3 response to NA isoprene emissions (ΔO3_ISOP) in surface air over NA is about one third of the response to all NA anthropogenic emissions (ΔO3_ANTH; although with different signs). Over intercontinental distances, ΔO3_ISOP is relatively larger; in summer and fall, ΔO3_ISOP in surface air over Europe and North Africa (EU region) is more than half of ΔO3_ANTH. Future increases in NA isoprene emissions could thus offset decreases in EU surface O3 resulting from controls on NA anthropogenic emissions. Over the EU region, ΔPAN_ISOP at 700 hPa is roughly the same magnitude as ΔPAN_ANTH (oppositely signed). Outside of the continental source region, the percentage changes in PAN are at least twice as large as for surface O3, implying that long-term PAN measurements at high altitude sites may help to detect O3 precursor emission changes. We find that neither the baseline level of isoprene emissions nor the fate of isoprene nitrates contributes to the large diversity in model estimates of the anthropogenic emission influence on intercontinental surface O3 or oxidized nitrogen deposition reported in the recent TF HTAP multi-model studies (TFHTAP, 2007).


Sign in / Sign up

Export Citation Format

Share Document