isoprene nitrates
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 6)

H-INDEX

11
(FIVE YEARS 0)

2021 ◽  
Vol 21 (13) ◽  
pp. 10799-10824
Author(s):  
Rongrong Wu ◽  
Luc Vereecken ◽  
Epameinondas Tsiligiannis ◽  
Sungah Kang ◽  
Sascha R. Albrecht ◽  
...  

Abstract. Isoprene oxidation by nitrate radical (NO3) is a potentially important source of secondary organic aerosol (SOA). It is suggested that the second or later-generation products are the more substantial contributors to SOA. However, there are few studies investigating the multi-generation chemistry of isoprene-NO3 reaction, and information about the volatility of different isoprene nitrates, which is essential to evaluate their potential to form SOA and determine their atmospheric fate, is rare. In this work, we studied the reaction between isoprene and NO3 in the SAPHIR chamber (Jülich) under near-atmospheric conditions. Various oxidation products were measured by a high-resolution time-of-flight chemical ionization mass spectrometer using Br− as the reagent ion. Most of the products detected are organic nitrates, and they are grouped into monomers (C4 and C5 products) and dimers (C10 products) with 1–3 nitrate groups according to their chemical composition. Most of the observed products match expected termination products observed in previous studies, but some compounds such as monomers and dimers with three nitrogen atoms were rarely reported in the literature as gas-phase products from isoprene oxidation by NO3. Possible formation mechanisms for these compounds are proposed. The multi-generation chemistry of isoprene and NO3 is characterized by taking advantage of the time behavior of different products. In addition, the vapor pressures of diverse isoprene nitrates are calculated by different parametrization methods. An estimation of the vapor pressure is also derived from their condensation behavior. According to our results, isoprene monomers belong to intermediate-volatility or semi-volatile organic compounds and thus have little effect on SOA formation. In contrast, the dimers are expected to have low or extremely low volatility, indicating that they are potentially substantial contributors to SOA. However, the monomers constitute 80 % of the total explained signals on average, while the dimers contribute less than 2 %, suggesting that the contribution of isoprene NO3 oxidation to SOA by condensation should be low under atmospheric conditions. We expect a SOA mass yield of about 5 % from the wall-loss- and dilution-corrected mass concentrations, assuming that all of the isoprene dimers in the low- or extremely low-volatility organic compound (LVOC or ELVOC) range will condense completely.


2021 ◽  
Vol 21 (8) ◽  
pp. 6315-6330
Author(s):  
Claire E. Reeves ◽  
Graham P. Mills ◽  
Lisa K. Whalley ◽  
W. Joe F. Acton ◽  
William J. Bloss ◽  
...  

Abstract. Isoprene is the most important biogenic volatile organic compound in the atmosphere. Its calculated impact on ozone (O3) is critically dependent on the model isoprene oxidation chemical scheme, in particular the way the isoprene-derived organic nitrates (IN) are treated. By combining gas chromatography with mass spectrometry, we have developed a system capable of separating and unambiguously measuring individual IN isomers. In this paper we use measurements from its first field deployment, which took place in Beijing as part of the Atmospheric Pollution and Human Health in a Chinese Megacity programme, to test understanding of the isoprene chemistry as simulated in the Master Chemical Mechanism (MCM) (v.3.3.1). Seven individual isoprene nitrates were identified and quantified during the campaign: two β-hydroxy nitrates (IHN), four δ-carbonyl nitrates (ICN), and propanone nitrate. Our measurements show that in the summertime conditions experienced in Beijing the ratio of (1-OH, 2-ONO2)-IHN to (4-OH, 3-ONO2)-IHN (the numbers indicate the carbon atom in the isoprene chain to which the radical is added) increases at NO mixing ratios below 2 ppb. This provides observational field evidence of the redistribution of the peroxy radicals derived from OH oxidation of isoprene away from the kinetic ratio towards a new thermodynamic equilibrium consistent with box model calculations. The observed amounts of δ-ICN demonstrate the importance of daytime addition of NO3 to isoprene in Beijing but suggest that the predominant source of the δ-ICN in the model (reaction of NO with δ-nitrooxy peroxy radicals) may be too large. Our speciated measurements of the four δ-ICN exhibit a mean C1 : C4 isomer ratio of 1.4 and a mean trans : cis isomer ratio of 7 and provide insight into the isomeric distribution of the δ-nitrooxy peroxy radicals. Together our measurements and model results indicate that propanone nitrate was formed from the OH oxidation of δ-ICN both during the day and night, as well as from NO3 addition to propene at night. This study demonstrates the value of speciated IN measurements in testing understanding of the isoprene degradation chemistry and shows how more extensive measurements would provide greater constraints. It highlights areas of the isoprene chemistry that warrant further study, in particular the impact of NO on the formation of the IHN and the NO3-initiated isoprene degradation chemistry, as well as the need for further laboratory studies on the formation and the losses of IN, in particular via photolysis of δ-ICN and hydrolysis.


2020 ◽  
Author(s):  
Rongrong Wu ◽  
Luc Vereecken ◽  
Epameinondas Tsiligiannis ◽  
Sungah Kang ◽  
Sascha R. Albrecht ◽  
...  

Abstract. Isoprene oxidation by nitrate radical (NO3) is a potentially important source of secondary organic aerosol (SOA). It is suggested that the second or later-generation products are the more substantial contributors to SOA. However, there are few studies investigating the multi-generation chemistry of isoprene-NO3 reaction, and information about the volatility of different isoprene nitrates, which is essential to evaluate their potential to form SOA and determine their atmospheric fate, is rare. In this work, we studied the reaction between isoprene and NO3 in the SAPHIR chamber (Jülich) under near atmospheric conditions. Various oxidation products were measured by a high-resolution time-of-flight chemical ionization mass spectrometer using Br− as the reagent ion. They are grouped into monomers (C4- and C5-products), and dimers (C10-products) with 1–3 nitrate groups according to their chemical composition. Most of the observed products match expected termination products observed in previous studies, but some compounds such as monomers and dimers with three nitrogen atoms were rarely reported in the literature as gas-phase products from isoprene oxidation by NO3. Possible formation mechanisms for these compounds are proposed. The multi-generation chemistry of isoprene and NO3 is characterized by taking advantages of the time behavior of different products. In addition, the vapor pressures of diverse isoprene nitrates are calculated by different parametrization methods. An estimation of the vapor pressure is also derived from their condensation behavior. According to our results, isoprene monomers belong to intermediate volatility or semi-volatile organic compounds and thus have little effect on SOA formation. In contrast, the dimers are expected to have low or extremely low volatility, indicating that they are potentially substantial contributors to SOA. However, the monomers constitute 80 % of the total explained signals on average, while the dimers contribute less than 2 %, suggesting that the contribution of isoprene NO3 oxidation to SOA by condensation should be low under atmospheric conditions. We expect a SOA mass yield of about 5 % from the wall loss and dilution corrected mass concentrations, assuming that all of the isoprene dimers in the low- or extremely low-volatility organic compound (LVOC or ELVOC) range will condense completely.


2020 ◽  
Author(s):  
Claire E. Reeves ◽  
Graham P. Mills ◽  
Lisa K. Whalley ◽  
W. Joe F. Acton ◽  
William J. Bloss ◽  
...  

Abstract. Isoprene is the most important biogenic volatile organic compound in the atmosphere. Its calculated impact on ozone (O3) is critically dependent on the model isoprene oxidation chemical scheme, in particular the way the isoprene-derived nitrates (IN) are treated. By combining gas chromatography with mass spectrometry, we have developed a system capable of separating, and unambiguously measuring, individual IN isomers. In this paper we report measurements from its first field deployment, which took place in Beijing as part of the Atmospheric Pollution and Human Health in a Chinese Megacity (APHH-Beijing) programme, along with box model simulations using the Master Chemical Mechanism (MCM) (v.3.3.1) to assess the key processes affecting the production and loss of the IN. Seven individual isoprene nitrates were identified and quantified during the summer campaign: two β-isoprene hydroxy nitrates (IHN); four δ isoprene carbonyl nitrates (ICN); and propanone nitrate. Whilst we had previously demonstrated that the system can measure the four δ-IHN, we found no evidence of them in Beijing. The two β-IHN mixing ratios are well correlated with an R2 value of 0.85. The mean for their ratio ((1-OH, 2-ONO2)-IHN : (4-OH, 3-ONO2)-IHN) is 3.4 and exhibits no clear diel cycle (the numbers in the names indicate the carbon (C) atom in the isoprene chain to which the radical is added). Examining this in a box model demonstrates its sensitivity to nitric oxide (NO), with lower NO mixing ratios favouring (1-OH, 2-ONO2)-IHN over (4-OH, 3-ONO2)-IHN. This is largely a reflection of the modelled ratios of their respective precursor peroxy radicals which, at NO mixing ratios of less than 1 part per billion (ppb), increase substantially with decreasing NO. Interestingly, this ratio in the peroxy radicals still exceeds the kinetic ratio (i.e. their initial ratio based on the yields of the adducts from OH addition to isoprene and the rates of reaction of the adducts with oxygen (O2)) even at NO mixing ratios as high as 100 ppb. The relationship of the observed β-IHN ratio with NO is much weaker than modelled, partly due to far fewer data points, but it agrees with the model simulation in so far as there tend to be larger ratios at sub 1 ppb amounts of NO. Of the δ-ICN, the two trans (E) isomers are observed to have the highest mixing ratios and the mean isomer ratio (E-(4-ONO2, 1-CO)-ICN to E-(1-ONO2, 4-CO)-ICN)) is 1.4, which is considerably lower than the expected ratio of 6 for addition of NO3 in the C1 and C4 carbon positions in the isoprene chain. The MCM produces far more δ-ICN than observed, particularly at night and it also simulates an increase in the daytime δ-ICN that greatly exceeds that seen in the observations. Interestingly, the modelled source of δ-ICN is predominantly during the daytime, due to the presence in Beijing of appreciable daytime amounts of NO3 along with isoprene. The modelled ratios of δ-ICN to propanone nitrate are very different to the observed. This study demonstrates the value of speciated IN measurements to test our understanding of the isoprene degradation chemistry. Our interpretation is limited by the uncertainties in our measurements and relatively small data set, but highlights areas of the isoprene chemistry that warrant further study, in particular the NO3 initiated isoprene degradation chemistry.


2020 ◽  
Author(s):  
Claire E. Reeves ◽  
Graham P. Mills ◽  
Lisa K. Whalley ◽  
W. Joe F. Acton ◽  
William J. Bloss ◽  
...  

2016 ◽  
Vol 9 (9) ◽  
pp. 4533-4545 ◽  
Author(s):  
Graham P. Mills ◽  
Glyn D. Hiatt-Gipson ◽  
Sean P. Bew ◽  
Claire E. Reeves

Abstract. According to atmospheric chemistry models, isoprene nitrates play an important role in determining the ozone production efficiency of isoprene; however this is very poorly constrained through observations as isoprene nitrates have not been widely measured. Measurements have been severely restricted largely due to a limited ability to measure individual isoprene nitrate isomers. An instrument based on gas chromatography/mass spectrometry (GCMS) and the associated calibration methods are described for the speciated measurements of individual isoprene nitrate isomers. Five of the primary isoprene nitrates which formed in the presence of NOx by reaction of isoprene with the hydroxyl radical (OH) in the Master Chemical Mechanism are identified using known isomers on two column phases and are fully separated on the Rtx-200 column. Three primary isoprene nitrates from the reaction of isoprene with the nitrate radical (NO3) are identified after synthesis from the already identified analogous hydroxy nitrate. A Tenax adsorbent-based trapping system allows the analysis of the majority of the known hydroxy and carbonyl primary isoprene nitrates, although not the (1,2)-IN isomer, under field-like levels of humidity and showed no impact from typical ambient concentrations of NOx and ozone.


ChemInform ◽  
2016 ◽  
Vol 47 (33) ◽  
Author(s):  
Sean P. Bew ◽  
Glyn D. Hiatt-Gipson ◽  
Graham P. Mills ◽  
Claire E. Reeves
Keyword(s):  

2016 ◽  
Vol 12 ◽  
pp. 1081-1095 ◽  
Author(s):  
Sean P Bew ◽  
Glyn D Hiatt-Gipson ◽  
Graham P Mills ◽  
Claire E Reeves

Here we report the chemoselective synthesis of several important, climate relevant isoprene nitrates using silver nitrate to mediate a ’halide for nitrate’ substitution. Employing readily available starting materials, reagents and Horner–Wadsworth–Emmons chemistry the synthesis of easily separable, synthetically versatile ‘key building blocks’ (E)- and (Z)-3-methyl-4-chlorobut-2-en-1-ol as well as (E)- and (Z)-1-((2-methyl-4-bromobut-2-enyloxy)methyl)-4-methoxybenzene has been achieved using cheap, ’off the shelf’ materials. Exploiting their reactivity we have studied their ability to undergo an ‘allylic halide for allylic nitrate’ substitution reaction which we demonstrate generates (E)- and (Z)-3-methyl-4-hydroxybut-2-enyl nitrate, and (E)- and (Z)-2-methyl-4-hydroxybut-2-enyl nitrates (‘isoprene nitrates’) in 66–80% overall yields. Using NOESY experiments the elucidation of the carbon–carbon double bond configuration within the purified isoprene nitrates has been established. Further exemplifying our ‘halide for nitrate’ substitution chemistry we outline the straightforward transformation of (1R,2S)-(−)-myrtenol bromide into the previously unknown monoterpene nitrate (1R,2S)-(−)-myrtenol nitrate.


Sign in / Sign up

Export Citation Format

Share Document