scholarly journals North American isoprene influence on intercontinental ozone pollution

2011 ◽  
Vol 11 (4) ◽  
pp. 1697-1710 ◽  
Author(s):  
A. M. Fiore ◽  
H. Levy II ◽  
D. A. Jaffe

Abstract. Changing land-use and climate may alter emissions of biogenic isoprene, a key ozone (O3) precursor. Isoprene is also a precursor to peroxy acetyl nitrate (PAN) and thus affects partitioning among oxidized nitrogen (NOy) species, shifting the balance towards PAN, which more efficiently contributes to long-range transport relative to nitric acid (HNO3) which rapidly deposits. With a suite of sensitivity simulations in the MOZART-2 global tropospheric chemistry model, we gauge the relative importance of the intercontinental influence of a 20% increase in North American (NA) isoprene and a 20% decrease in NA anthropogenic emissions (nitrogen oxides (NOx), non-methane volatile organic compounds (NMVOC) and NOx + NMVOC + carbon monoxide + aerosols). The surface O3 response to NA isoprene emissions (ΔO3_ISOP) in surface air over NA is about one third of the response to all NA anthropogenic emissions (ΔO3_ANTH; although with different signs). Over intercontinental distances, ΔO3_ISOP is relatively larger; in summer and fall, ΔO3_ISOP in surface air over Europe and North Africa (EU region) is more than half of ΔO3_ANTH. Future increases in NA isoprene emissions could thus offset decreases in EU surface O3 resulting from controls on NA anthropogenic emissions. Over the EU region, ΔPAN_ISOP at 700 hPa is roughly the same magnitude as ΔPAN_ANTH (oppositely signed). Outside of the continental source region, the percentage changes in PAN are at least twice as large as for surface O3, implying that long-term PAN measurements at high altitude sites may help to detect O3 precursor emission changes. We find that neither the baseline level of isoprene emissions nor the fate of isoprene nitrates contributes to the large diversity in model estimates of the anthropogenic emission influence on intercontinental surface O3 or oxidized nitrogen deposition reported in the recent TF HTAP multi-model studies (TFHTAP, 2007).

2010 ◽  
Vol 10 (10) ◽  
pp. 24821-24851 ◽  
Author(s):  
A. M. Fiore ◽  
H. Levy II ◽  
D. A. Jaffe

Abstract. Changing land-use and climate may alter emissions of biogenic isoprene, a key ozone (O3) precursor. Isoprene is also a precursor to peroxy acetyl nitrate (PAN) and thus affects partitioning among oxidized nitrogen (NOy) species, shifting the balance towards PAN which more efficiently contributes to long-range transport relative to nitric acid (HNO3) which rapidly deposits. With a suite of sensitivity simulations in the MOZART-2 global tropospheric chemistry model, we gauge the relative importance of the intercontinental influence of 20% changes in North American (NA) isoprene versus 20% changes in NA anthropogenic emissions (nitrogen oxides (NOx), non-methane volatile organic compounds (NMVOC) and NOx + NMVOC + carbon monoxide + aerosols). The regional NA surface O3 response to a 20% increase in NA isoprene is approximately one third of the response (oppositely signed) to a 20% decrease in all NA anthropogenic emissions in summer. The intercontinental surface O3 response over Europe and North Africa (EU region) to NA isoprene is more than half of the response to all NA anthropogenic emissions combined in summer and fall. During these seasons, natural inter-annual variations in NA isoprene emissions (estimated at ±10%) may modulate the responses of EU surface O3, lower tropospheric PAN, and total NOy deposition to a 20% decrease in NA anthropogenic emissions by ±25%, ±50%, and ±20%, respectively. Lower tropospheric PAN responds similarly for 20% perturbations to either NA isoprene or NA anthropogenic O3 precursor emissions. This PAN response is at least twice as large as the relative changes in surface O3, implying that long-term PAN measurements at high altitude sites may help to detect O3 precursor emission changes. We find that neither the baseline level of isoprene emissions nor the fate of isoprene nitrates contributes to the large diversity in model estimates of the anthropogenic emission influence on intercontinental surface O3 or oxidized nitrogen deposition, reported in the recent TF HTAP multi-model studies (TFHTAP, 2007).


2006 ◽  
Vol 6 (8) ◽  
pp. 2057-2072 ◽  
Author(s):  
G. Guerova ◽  
I. Bey ◽  
J.-L. Attié ◽  
R. V. Martin ◽  
J. Cui ◽  
...  

Abstract. This paper reports on the transport of ozone (O3) and related species over the North Atlantic ocean and its impact on Europe. Measurements of nitrogen dioxide (NO2) and carbon monoxide (CO) columns from the GOME and MOPITT satellite instruments, respectively, are used in conjunction with the GEOS-CHEM global model of transport and tropospheric chemistry to identify the major events of long range transport that reach Europe over the course of summer 2000. Sensitivity model simulations are used to analyse observed O3 distributions with respect to the impact of long range transport events. For that purpose, we used in-situ O3 observations taken at the mountain site of Jungfraujoch as well as O3 vertical profiles taken in the vicinity of central European cities. Over the course of summer 2000, we identified 9 major episodes of transatlantic pollution transport; 7 events are associated with transient cyclones while 2 events occur through zonal transport (e.g. by advection in the strong low-level westerly winds established in summer between the Azores anticyclone and transient cyclones). We find that on average three episodes occur per month with the strongest ones being in June. The number and frequency of long range transport events that reach Europe are driven by the position and strength of the Azores anticyclone. Model sensitivity simulations indicate that the summer mean North American O3 contribution ranges from 3 to 5 ppb (7–11%) in the planetary boundary layer and 10 to 13 ppb (18–23%) in the middle and upper troposphere. During particular episodes, North American sources can result in O3 enhancements up to 25–28 ppb in the layer between 800–600 hPa and 10–12 ppb in the boundary layer. The impact of the zonal transport events on O3 distribution over Europe is more clearly seen below 700 hPa as they tend to transport pollution at lower levels while the events associated with transient cyclones are more likely to have an impact on the middle and upper troposphere (i.e. above 600 hPa). The air mass origins found in the GEOS-CHEM model are clearly confirmed by back trajectory analyses. During most of the 9 events, a strong contribution in North American O3 is in general associated with only little European O3 and vice-versa (in particular at the Jungfraujoch). A substantial North American contribution (e.g., 30% or higher) to O3 over Europe does not always result in pronounced O3 enhancements in the observations during our period of study.


2005 ◽  
Vol 5 (4) ◽  
pp. 6127-6184 ◽  
Author(s):  
G. Guerova ◽  
I. Bey ◽  
J.-L. Attié ◽  
R. V. Martin

Abstract. This paper reports on Long Range Transport (LRT) of ozone and related species over the North Atlantic ocean and its impact on Europe. Measurements of NO2 and O3 columns from the GOME and MOPITT satellite instruments are first used in conjunction with the GEOS-CHEM global model of transport and tropospheric chemistry to identify the major events of LRT that reach Europe over the course of the summer 2000. Model simulations are then used to examine surface O3 observations at a European mountain site and O3 vertical profiles over several European cities to quantify the impact of the LRT events on the European ozone distributions. Over the course of summer 2000, we identified nine major episodes of pollution transport between North America and Europe, which are in majority associated with WCB/post-frontal outflow (7 events) and zonal transport (2 events). We find that on average three episodes occur per month with the strongest ones being in June. The number and frequency of LRT events that reach Europe after leaving North America is strongly driven by the position and strength of the Azores anticyclone. After leaving North America, the plumes can either i) travel in the North American cyclones, mostly in the Warm Conveyor Belt (WCB), tracking poleward and thus reach Europe at high latitudes; ii) be transported zonally between 40° and 55° N directly to Europe; iii) be incorporated into the Azores anticyclone and reach Europe at mid-latitudes. Based on model sensitivity simulation it can be concluded that on average the North American sources of ozone contribute between 2–8 ppb in PBL and 10–13 ppb in FT. During particular episodes the North American sources resulted in O3 enhancement up to 25–28 ppb in the layer between 800–600 hPa and 10–12 ppb in PBL. For some episodes a substantial North American contribution (30% or higher) does not translate into a well marked enhancement of the total O3.


2008 ◽  
Vol 5 (2) ◽  
pp. 121 ◽  
Author(s):  
Dan Jaffe ◽  
Sarah Strode

Environmental context. Mercury is a global problem and more than half of all anthropogenic emissions are from Asia. In this paper we review the sources of mercury coming from Asia, the environmental fate of these emissions and their global transport. Asian emissions of mercury are responsible for a small, but significant share of the mercury that deposits throughout the world, especially in the northern hemisphere. Abstract. Asian anthropogenic emissions of mercury to the atmosphere contribute 54% of all anthropogenic emissions. For this reason, it is important to understand how these emissions impact both the regional and global mercury cycle. The largest share of mercury emissions in Asia is due to coal combustion and smelting. Approximately half of the Asian anthropogenic emissions are emitted as Hg0. The remainder are emitted as gaseous Hg2+ compounds and particle-bound Hg (PHg). These latter forms of Hg are susceptible to relatively rapid removal from the atmosphere. The Asian emissions lead to very high concentrations of airborne Hg in urban and rural areas of Asia. Modelling the fate and transport of the Asian emissions using the Goddard Earth Observing System (GEOS)-Chem model of global tropospheric chemistry shows that these emissions are associated with high deposition of Hg within Asia, but there is little data with which to evaluate this model result. Observations downwind of Asia show that Hg0 is the dominant form in Asian plumes, with generally small, but variable amounts of other forms. Thus we conclude that most of the Asian Hg2+ and PHg have been removed in the source region. In addition, downwind observations show that total emissions are significantly larger than indicated by the anthropogenic emission inventory. This likely reflects either an underestimate of the anthropogenic emissions or emissions of Hg from land. Plumes containing enhancements in Asian Hg0, but not other species, have been detected as far away as North America. Because only Asian Hg0 is transported long distances, the deposition is distributed relatively uniformly in the northern hemisphere. In North America, Asian anthropogenic emissions account for 7–20% of all deposition, with an average of 16%.


2017 ◽  
Vol 17 (9) ◽  
pp. 5721-5750 ◽  
Author(s):  
Min Huang ◽  
Gregory R. Carmichael ◽  
R. Bradley Pierce ◽  
Duseong S. Jo ◽  
Rokjin J. Park ◽  
...  

Abstract. The recent update on the US National Ambient Air Quality Standards (NAAQS) of the ground-level ozone (O3) can benefit from a better understanding of its source contributions in different US regions during recent years. In the Hemispheric Transport of Air Pollution experiment phase 1 (HTAP1), various global models were used to determine the O3 source–receptor (SR) relationships among three continents in the Northern Hemisphere in 2001. In support of the HTAP phase 2 (HTAP2) experiment that studies more recent years and involves higher-resolution global models and regional models' participation, we conduct a number of regional-scale Sulfur Transport and dEposition Model (STEM) air quality base and sensitivity simulations over North America during May–June 2010. STEM's top and lateral chemical boundary conditions were downscaled from three global chemical transport models' (i.e., GEOS-Chem, RAQMS, and ECMWF C-IFS) base and sensitivity simulations in which the East Asian (EAS) anthropogenic emissions were reduced by 20 %. The mean differences between STEM surface O3 sensitivities to the emission changes and its corresponding boundary condition model's are smaller than those among its boundary condition models, in terms of the regional/period-mean (< 10 %) and the spatial distributions. An additional STEM simulation was performed in which the boundary conditions were downscaled from a RAQMS (Realtime Air Quality Modeling System) simulation without EAS anthropogenic emissions. The scalability of O3 sensitivities to the size of the emission perturbation is spatially varying, and the full (i.e., based on a 100 % emission reduction) source contribution obtained from linearly scaling the North American mean O3 sensitivities to a 20 % reduction in the EAS anthropogenic emissions may be underestimated by at least 10 %. The three boundary condition models' mean O3 sensitivities to the 20 % EAS emission perturbations are ∼ 8 % (May–June 2010)/∼ 11 % (2010 annual) lower than those estimated by eight global models, and the multi-model ensemble estimates are higher than the HTAP1 reported 2001 conditions. GEOS-Chem sensitivities indicate that the EAS anthropogenic NOx emissions matter more than the other EAS O3 precursors to the North American O3, qualitatively consistent with previous adjoint sensitivity calculations. In addition to the analyses on large spatial–temporal scales relative to the HTAP1, we also show results on subcontinental and event scales that are more relevant to the US air quality management. The EAS pollution impacts are weaker during observed O3 exceedances than on all days in most US regions except over some high-terrain western US rural/remote areas. Satellite O3 (TES, JPL–IASI, and AIRS) and carbon monoxide (TES and AIRS) products, along with surface measurements and model calculations, show that during certain episodes stratospheric O3 intrusions and the transported EAS pollution influenced O3 in the western and the eastern US differently. Free-running (i.e., without chemical data assimilation) global models underpredicted the transported background O3 during these episodes, posing difficulties for STEM to accurately simulate the surface O3 and its source contribution. Although we effectively improved the modeled O3 by incorporating satellite O3 (OMI and MLS) and evaluated the quality of the HTAP2 emission inventory with the Royal Netherlands Meteorological Institute–Ozone Monitoring Instrument (KNMI–OMI) nitrogen dioxide, using observations to evaluate and improve O3 source attribution still remains to be further explored.


2017 ◽  
Author(s):  
Petros Vasilakos ◽  
Yong-Ηa Kim ◽  
Jeffrey R. Pierce ◽  
Sotira Yiacoumi ◽  
Costas Tsouris ◽  
...  

Abstract. Radioactive charging can significantly impact the way radioactive aerosols behave, and as a result their lifetime, but such effects are neglected in predictive model studies of radioactive plumes. The objective of this work is to determine the influence of radioactive charging on the vertical transport of radioactive aerosols in the atmosphere, through its effect on coagulation and deposition, as well as quantifying the impact of this charging on aerosol lifetime. The TwO-Moment Aerosol Sectional (TOMAS) microphysical model was extended to account for radioactive charging effects on coagulation in a computationally efficient way. The expanded model, TOMAS-RC (TOMAS with Radioactive Charging effects), was then used to simulate the microphysical evolution and deposition of radioactive aerosol (containing the isotopes 131I and 137Cs) in a number of idealized atmospheric transport experiments. Results indicate that radioactive charging can facilitate or suppress coagulation of radioactive aerosols, thus influencing the deposition patterns and total amount of radioactive aerosol mass available for long-range transport. Sensitivity simulations to uncertain parameters affirm the potential importance of radioactive charging effects. An important finding is that charging of neutral, coarse mode aerosol from background radiation can reduce coagulation rates and extend its lifetime in the atmosphere by up to a factor of 2.


2018 ◽  
Author(s):  
Jinhui Gao ◽  
Bin Zhu ◽  
Hui Xiao ◽  
Hanqing Kang ◽  
Chen Pan

Abstract. As an important solar-radiation absorbing aerosol, the effect of black carbon (BC) on surface ozone, by influencing photolysis rate, has been widely discussed by offline model studies. However, BC-boundary layer (BL) interactions also influence surface ozone. Using the online model simulations and processes analysis, we demonstrate the significant impact of BC-BL interaction on surface ozone. The absorbing effect of BC heats the air above the BL and suppresses BL development, which eventually leads to changes in the contributions of ozone through chemical and physical processes (photochemistry, vertical mixing, and advection). Different from previous offline model studies, BL suppression leads large amounts of ozone precursors being confined below the BL which offsetting the influence from the reduction of photolysis rate, thus enhancing ozone photochemical formation before noon. Furthermore, the changes in physical process show a more significant influence on surface ozone. The weakened turbulence entrains much less ozone from the overlying ozone-rich air down to surface. As a result, the net contribution of ozone from physical and chemical processes leads to surface ozone reduction before noon. The maximum reduction reaches to 16.4 ppb at 12:00. In the afternoon, the changes in chemical process are small which influence inconspicuously to surface ozone. However, physical process still influences the surface ozone significantly. Due to the delayed development of the BL, less vertically mixed BL continues to show an obvious ozone gradient near the top of the BL. Therefore, more ozone aloft can be entrained down to the surface, offsetting the surface ozone reduction. Comparing all the changes in the contributions of processes, the change in the contribution of vertical mixing plays a more important role in impacting surface ozone. Our results show the great impacts of BC-BL interactions on surface ozone. And more attention should be paid on the mechanism of aerosol-BL interactions when we deal with the ozone pollution control in China.


Author(s):  
Hervé Petetin ◽  
Bastien Sauvage ◽  
Mark Parrington ◽  
Hannah Clark ◽  
Alain Fontaine ◽  
...  

<p><strong>Abstract.</strong> This study investigates the role of biomass burning and long-range transport in the anomalies of carbon monoxide (CO) regularly observed along the tropospheric vertical profiles measured in the framework of IAGOS. Considering the high interannual variability of biomass burning emissions and the episodic nature of pollution long-range transport, one strength of this study is the amount of data taken into account, namely 30,000 vertical profiles at 9 clusters of airports in Europe, North America, Asia, India and southern Africa over the period 2002&amp;ndash;2017. </p> <p> As a preliminary, a brief overview of the spatio-temporal variability, latitudinal distribution, interannual variability and trends of biomass burning CO emissions from 14 regions is provided. The distribution of CO mixing ratios at different levels of the troposphere is also provided based on the entire IAGOS database (125 million CO observations). </p> <p> This study focuses on the free troposphere (altitudes above 2<span class="thinspace"></span>km) where the long-range transport of pollution is favoured. Anomalies at a given airport cluster are here defined as departures from the local seasonally-averaged climatological vertical profile. The intensity of these anomalies varies significantly depending on the airport, with maximum (minimum) CO anomalies of 110&amp;ndash;150 (48)<span class="thinspace"></span>ppbv in Asia (Europe). Looking at the seasonal variation of the frequency of occurrence, the 25<span class="thinspace"></span>% strongest CO anomalies appears reasonably well distributed along the year, in contrast to the 5<span class="thinspace"></span>% or 1<span class="thinspace"></span>% strongest anomalies that exhibit a strong seasonality with for instance more frequent anomalies during summertime in northern United-States, during winter/spring in Japan, during spring in South-east China, during the non-monsoon seasons in south-east Asia and south India, and during summer/fall at Windhoek, Namibia. Depending on the location, these strong anomalies are observed in different parts of the free troposphere. </p> <p> In order to investigate the role of biomass burning emissions in these anomalies, we used the SOFT-IO v1.0 IAGOS added-value products that consist of FLEXPART 20-days backward simulations along all IAGOS aircraft trajectories, coupled with anthropogenic (MACCity) and biomass burning (GFAS) CO emission inventories and vertical injections. SOFT-IO estimates the contribution (in ppbv) of the recent (less than 20 days) primary worldwide CO emissions, tagged per source region. Biomass burning emissions are found to play an important role in the strongest CO anomalies observed at most airport clusters. The regional tags indicate a large contribution from boreal regions at airport clusters in Europe and North America during summer season. In both Japan and south India, the anthropogenic emissions dominate all along the year, except for the strongest summertime anomalies observed in Japan that are due to Siberian fires. The strongest CO anomalies at airport clusters located in south-east Asia are induced by fires burning during spring in south-east Asia and during fall in equatorial Asia. In southern Africa, the Windhoek airport was mainly impacted by fires in southern hemisphere Africa and South America. </p> <p> To our knowledge, no other studies have used such a large dataset of in situ vertical profiles for deriving a climatology of the impact of biomass burning versus anthropogenic emissions on the strongest CO anomalies observed in the troposphere, in combination with information on the source regions. This study therefore provides both qualitative and quantitative information for interpreting the highly variable CO vertical distribution in several regions of interest.</p>


2021 ◽  
Author(s):  
Kang Sun ◽  
Lingbo Li ◽  
Shruti Jagini ◽  
Dan Li

Abstract. The evolving nature of the COVID-19 pandemic necessitates timely estimates of the resultant perturbations to anthropogenic emissions. Here we present a novel framework based on the relationships between observed column abundance and wind speed to rapidly estimate air basin-scale NOx emission rate and apply it at the Po Valley in Italy using OMI and TROPOMI NO2 tropospheric column observations. The NOx chemical lifetime is retrieved together with the emission rate and found to be 15–20 h in winter and 5–6 h in summer. A statistical model is trained using the estimated emission rates before the pandemic to predict the trajectory without COVID-19. Compared with this business-as-usual trajectory, the real 2020 emission rates show two distinctive drops in March (−41 %) and November (−35 %) that correspond to tightened COVID-19 control measures. The temporal variation of pandemic-induced NOx emission changes qualitatively agree with Google and Apple mobility indicators. The overall net NOx emission reduction in 2020 due to the COVID-19 pandemic is estimated to be 21 %.


Sign in / Sign up

Export Citation Format

Share Document