scholarly journals Cross-comparison of cloud liquid water path derived from observations by two space-borne and one ground-based instrument in northern Europe

2019 ◽  
Vol 12 (11) ◽  
pp. 5927-5946 ◽  
Author(s):  
Vladimir S. Kostsov ◽  
Anke Kniffka ◽  
Martin Stengel ◽  
Dmitry V. Ionov

Abstract. Cloud liquid water path (LWP) is one of the target atmospheric parameters retrieved remotely from ground-based and space-borne platforms using different observation methods and processing algorithms. Validation of LWP retrievals is a complicated task since a cloud cover is characterised by strong temporal and spatial variability while remote sensing methods have different temporal and spatial resolutions. An attempt has been made to compare and analyse the collocated LWP data delivered by two satellite instruments SEVIRI and AVHRR together with the data derived from microwave observations by the ground-based radiometer RPG-HATPRO. The geographical region of interest is the vicinity of St. Petersburg, Russia, where the RPG-HATPRO radiometer is operating. The study is focused on two problems. The first one is the so-called scale difference problem, which originates from dissimilar spatial resolutions of measurements. The second problem refers to the land–sea LWP gradient. The radiometric site is located 2.5 km from the coastline where the effects of the LWP gradient are pronounced. A good agreement of data obtained at the microwave radiometer location by all three instruments (HATPRO, SEVIRI, and AVHRR) during warm and cold seasons is demonstrated (the largest correlation coefficient 0.93 was detected for HATPRO and AVHRR datasets). The analysis showed no bias of the SEVIRI results with respect to HATPRO data and a large positive bias (0.013–0.017 kg m−2) of the AVHRR results for both warm and cold seasons. The analysis of LWP maps plotted on the basis of the SEVIRI and AVHRR measurements over land and water surfaces in the vicinity of St. Petersburg revealed the unexpectedly high LWP values delivered by AVHRR during the cold season over the Neva River bay and over the Saimaa Lake and the abnormal land–sea LWP gradient in these areas. For the detailed evaluation of atmospheric state and ice cover in the considered geographical regions during the periods of ground-based and satellite measurements, reanalysis data were used. It is shown that the most probable reason for the observed artefacts in the AVHRR measurements over water and ice surfaces is the coarse resolution of the land–sea and snow–ice masks used by the AVHRR retrieval algorithm. The influence of a cloud field inhomogeneity on the agreement between the satellite and the ground-based data is studied. For this purpose, the simple estimate of the LWP temporal variability is used as a measure of the spatial inhomogeneity. It has been demonstrated that both instruments are equally sensitive to the inhomogeneity of a cloud field despite the fact that they have different spatial resolutions.

2019 ◽  
Author(s):  
Vladimir S. Kostsov ◽  
Anke Kniffka ◽  
Martin Stengel ◽  
Dmitry V. Ionov

Abstract. Cloud liquid water path (LWP) is one of the target atmospheric parameters retrieved remotely from ground-based and space-borne platforms using different observation methods and processing algorithms. Validation of LWP retrievals is a complicated task since a cloud cover is characterised by strong temporal and spatial variability while remote sensing methods have different temporal and spatial resolution. An attempt has been made to compare and analyse the collocated LWP data delivered by two satellite instruments SEVIRI and AVHRR together with the data derived from microwave observations by the ground-based radiometer RPG‑HATPRO. The geographical region of interest is the vicinity of St.Petersburg, Russia, where the RPG‑HATPRO radiometer is operating. The study is focused on two problems. The first one is the so-called scale difference problem which originates from dissimilar spatial resolutions of measurements. The second problem refers to the land-sea LWP gradient. The radiometric site is located 2.5 km from the coastline where the effects of the LWP gradient are pronounced. A good agreement of data obtained at the microwave radiometer location by all three instruments (HATPRO, SEVIRI and AVHRR) during warm and cold seasons is demonstrated (the largest correlation coefficient 0.93 was detected for HATPRO and AVHRR data sets). The analysis showed no bias of the SEVIRI results with respect to HATPRO data and a high bias (0.013–0.017 kg m−2) of the AVHRR results for both warm and cold seasons. The analysis of LWP maps plotted on the basis of the SEVIRI and AVHRR measurements over land and water surfaces in the vicinity of St.Petersburg revealed the unexpectedly high LWP values delivered by AVHRR during cold season over the Neva river bay and over the Saimaa Lake and the abnormal land-sea LWP gradient in these areas. For the detailed evaluation of atmospheric state and ice cover in the considered geographical regions during the periods of ground-based and satellite measurements, reanalysis data were used. It is shown that the most probable reason for the observed artifacts in the AVHRR measurements over water/ice surfaces is the coarse resolution of the land-sea and snow/ice masks used by the AVHRR retrieval algorithm. The influence of a cloud field inhomogeneity on the agreement between the satellite and the ground-based data was studied. For this purpose, the simple estimate of the LWP temporal variability was used as a measure of the spatial inhomogeneity. It has been demonstrated that both instruments are equally sensitive to the inhomogeneity of a cloud field despite the fact that they have different spatial resolution.


2009 ◽  
Vol 48 (9) ◽  
pp. 1981-1993 ◽  
Author(s):  
Anita D. Rapp ◽  
M. Lebsock ◽  
C. Kummerow

Abstract How to deal with the different spatial resolutions of multifrequency satellite microwave radiometer measurements is a common problem in retrievals of cloud properties and rainfall. Data convolution and deconvolution is a common approach to resampling the measurements to a single resolution. Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) measurements are resampled to the resolution of the 19-GHz field of view for use in a multifrequency optimal estimation retrieval algorithm of cloud liquid water path, total precipitable water, and wind speed. Resampling the TMI measurements is found to have a strong influence on retrievals of cloud liquid water path and a slight influence on wind speed. Beam-filling effects in the resampled brightness temperatures are shown to be responsible for the large differences between the retrievals using the TMI native resolution and resampled brightness temperatures. Synthetic retrievals are performed to test the sensitivity of the retrieved parameters to beam-filling effects in the resampling of each of the different channels. Beam-filling effects due to the convolution of the 85-GHz channels are shown to be the largest contributor to differences in retrieved cloud liquid water path. Differences in retrieved wind speeds are found to be a combination of effects from deconvolving the 10-GHz brightness temperatures and compensation effects due to the lower liquid water path being retrieved by the high-frequency channels. The influence of beam-filling effects on daily and monthly averages of cloud liquid water path is also explored. Results show that space–time averaging of cloud liquid water path cannot fully compensate for the beam-filling effects and should be considered when using cloud liquid water path data for validation or in climate studies.


2001 ◽  
Vol 106 (D13) ◽  
pp. 14485-14500 ◽  
Author(s):  
James C. Liljegren ◽  
Eugene E. Clothiaux ◽  
Gerald G. Mace ◽  
Seiji Kato ◽  
Xiquan Dong

2004 ◽  
Vol 17 (24) ◽  
pp. 4760-4782 ◽  
Author(s):  
Manajit Sengupta ◽  
Eugene E. Clothiaux ◽  
Thomas P. Ackerman

Abstract A 4-yr climatology (1997–2000) of warm boundary layer cloud properties is developed for the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Program Southern Great Plains (SGP) site. Parameters in the climatology include cloud liquid water path, cloud-base height, and surface solar flux. These parameters are retrieved from measurements produced by a dual-channel microwave radiometer, a millimeter-wave cloud radar, a micropulse lidar, a Belfort ceilometer, shortwave radiometers, and atmospheric temperature profiles amalgamated from multiple sources, including radiosondes. While no significant interannual differences are observed in the datasets, there are diurnal variations with nighttime liquid water paths consistently higher than daytime values. The summer months of June, July, and August have the lowest liquid water paths and the highest cloud-base heights. Model outputs of cloud liquid water paths from the European Centre for Medium-Range Weather Forecasts (ECMWF) model and the Eta Model for 104 model output location time series (MOLTS) stations in the environs of the SGP central facility are compared to observations. The ECMWF and MOLTS median liquid water paths are greater than 3 times the observed values. The MOLTS data show lower liquid water paths in summer, which is consistent with observations, while the ECMWF data exhibit the opposite tendency. A parameterization of normalized cloud forcing that requires only cloud liquid water path and solar zenith angle is developed from the observations. The parameterization, which has a correlation coefficient of 0.81 with the observations, provides estimates of surface solar flux that are comparable to values obtained from explicit radiative transfer calculations based on plane-parallel theory. This parameterization is used to estimate the impact on the surface solar flux of differences in the liquid water paths between models and observations. Overall, there is a low bias of 50% in modeled normalized cloud forcing resulting from the excess liquid water paths in the two models. Splitting the liquid water path into two components, cloud thickness and liquid water content, shows that the higher liquid water paths in the model outputs are primarily a result of higher liquid water contents, although cloud thickness may a play a role, especially for the ECMWF model results.


2008 ◽  
Vol 21 (8) ◽  
pp. 1721-1739 ◽  
Author(s):  
Christopher W. O’Dell ◽  
Frank J. Wentz ◽  
Ralf Bennartz

Abstract This work describes a new climatology of cloud liquid water path (LWP), termed the University of Wisconsin (UWisc) climatology, derived from 18 yr of satellite-based passive microwave observations over the global oceans. The climatology is based on a modern retrieval methodology applied consistently to the Special Sensor Microwave Imager (SSM/I), the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), and the Advanced Microwave Scanning Radiometer (AMSR) for Earth Observing System (EOS) (AMSR-E) microwave sensors on eight different satellite platforms, beginning in 1988 and continuing through 2005. It goes beyond previously published climatologies by explicitly solving for the diurnal cycle of cloud liquid water by providing statistical error estimates, and includes a detailed discussion of possible systematic errors. A novel methodology for constructing the climatology is used in which a mean monthly diurnal cycle as well as monthly means of the liquid water path are derived simultaneously from the data on a 1° grid; the methodology also produces statistical errors for these quantities, which decrease toward the end of the time record as the number of observations increases. The derived diurnal cycles are consistent with previous findings in the tropics, but are also derived for higher latitudes and contain more information than in previous studies. The new climatology exhibits differences with previous observationally based climatologies and is found to be more consistent with the 40-yr ECMWF Re-Analysis (ERA-40) than are the previous climatologies. Potential systematic errors of the order of 15%–30% or higher exist in the LWP climatology. A previously unexplored source of systematic error is caused by the assumption that all microwave-based retrievals of LWP must make regarding the partitioning of cloud water and rainwater, which cannot be determined using microwave observations alone. The potentially large systematic errors that result may hamper the usefulness of microwave-based climatologies of both cloud liquid water and especially rain rate, particularly in certain regions of the tropics and midlatitudes where the separation of rain from liquid cloud water is most critical.


Sign in / Sign up

Export Citation Format

Share Document