cloud liquid water path
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 25)

H-INDEX

24
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Vladimir Kostsov ◽  
Dmitry Ionov ◽  
Anke Kniffka

Abstract. Combined zenith and off-zenith ground-based observations by modern microwave radiometers provide an opportunity to study horizontal inhomogeneities of the humidity field in the troposphere and of the cloud liquid water path (LWP) spatial distribution. However, practical applications are difficult and require thorough analysis of the information content of measurements, assessment of errors of data processing algorithm and the development of the quality control procedures. In this study we analyse the application of our LWP retrieval algorithm based on the inversion of the radiative transfer equation to the problem of detection of the LWP horizontal inhomogeneities by means of ground-based microwave observations in the vicinity of a coastline of a water object of medium size. The study is based on data acquired by the microwave radiometer RPG-HATPRO which is located in the suburbs of St.Petersburg, Russia, at 2.5 km distance from the coastline of the Neva Bay (the Gulf of Finland) and is operating in angular scanning mode in the vertical plane. The retrieval setup is organised in such a way that zenith and off-zenith measurements provide equal sensitivity to atmospheric parameters. The optimal elevation angles for off-zenith observations are selected. The possibility to detect LWP horizontal inhomogeneity, namely the LWP land-sea contrast, for different measurement geometries (elevation angles) and values of cloud base height is analysed. It is shown that ground-based microwave observations in the vicinity of a coastline can be a valuable tool for validation of the space-borne measurements of the LWP land-sea contrast if three principal requirements are met: (a) the multi-parameter physical inversion method is used for retrieving LWP; (b) rigorous bias correction and quality control procedures are applied to the retrieval results; (c) the information on the cloud base height is available. As a result of processing the microwave measurements at the observational site of St.Petersburg State University, the monthly-averaged values of the LWP land-sea difference have been obtained for summer months within the period 2013–2021. For 24 out of 25 months of high quality observations, the LWP land-sea monthly difference is positive (larger values over land and smaller values over water) and can reach 0.06–0.07 kg m−2. The estimations of the LWP land-sea contrast obtained from the ground-based microwave measurements at the observational site of St.Petersburg University are in very good agreement with the values of the LWP land-sea contrast obtained from the multi-year space-borne measurements by the SEVIRI instrument (Spinning Enhanced Visible and InfraRed Imager) in the region of the Neva Bay (the Gulf of Finland) in June and July. For August, the so-called “August anomaly” detected by space-borne observations is not confirmed by the ground-based measurements.


2021 ◽  
Author(s):  
Mahnoosh Haghighatnasab ◽  
Johannes Quass

<p>Since increased anthropogenic aerosol result in an enhancement in cloud droplet number concentration, cloud and precipitation process are modified. It is unclear how exactly cloud liquid water path (LWP) and cloud fraction respond to aerosol perturbations. A large volcanic eruption may help to better understand and quantify the cloud response to external perturbations, with a focus on the short-term cloud adjustments . Volcloud is one of the research projects in the Vollmpact collaborative German research unit which aims to the improve understanding of how the climate system responds to volcanic eruptions. This includes skills in satellite remote sensing of atmospheric composition, stratospheric aerosol parameters and clouds as well as in modelling of aerosol microphysical and cloud processes, and in climate modelling. The goal of VolCloud is to understand and quantify the response of clouds to volcanic eruptions and to thereby advance the fundamental understanding of the cloud response to external forcing, particularly aerosol-cloud interactions. In this study we used ICON-NWP atmospheric model at a cloud-system-resolving resolution of 2.5 km horizontally, to simulate the region around the Holuhraun volcano for the duration of one week (1 – 7 September 2014). The pair of simulations, with and without the volcanic aerosol emissions allowed us to assess the simulated effective radiative forcing and its mechanisms as well as its impact on adjustments of cloud liquid water path and cloud fraction to the perturbations of cloud droplet number concentration. In this case studies liquid water path positively correlates with enhanced cloud droplet concentration.</p>


2021 ◽  
Vol 21 (12) ◽  
pp. 9809-9828
Author(s):  
Bida Jian ◽  
Jiming Li ◽  
Guoyin Wang ◽  
Yuxin Zhao ◽  
Yarong Li ◽  
...  

Abstract. The cloud albedo in the marine subtropical stratocumulus regions plays a key role in regulating the regional energy budget. Based on 12 years of monthly data from multiple satellite datasets, the long-term, monthly and seasonal cycle of averaged cloud albedo in five stratocumulus regions were investigated to intercompare the atmosphere-only simulations between phases 5 and 6 of the Coupled Model Intercomparison Project (AMIP5 and AMIP6). Statistical results showed that the long-term regressed cloud albedos were underestimated in most AMIP6 models compared with the satellite-driven cloud albedos, and the AMIP6 models produced a similar spread as AMIP5 over all regions. The monthly averaged values and seasonal cycle of cloud albedo of AMIP6 ensemble mean showed a better correlation with the satellite-driven observations than that of the AMIP5 ensemble mean. However, the AMIP6 model still failed to reproduce the values and amplitude in some regions. By employing the Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2) data, this study estimated the relative contributions of different aerosols and meteorological factors on the long-term variation of marine stratocumulus cloud albedo under different cloud liquid water path (LWP) conditions. The multiple regression models can explain ∼ 65 % of the changes in the cloud albedo. Under the monthly mean LWP ≤ 65 g m−2, dust and black carbon dominantly contributed to the changes in the cloud albedo, while dust and sulfur dioxide aerosol contributed the most under the condition of 65 g m−2 < LWP ≤ 120 g m−2. These results suggest that the parameterization of cloud–aerosol interactions is crucial for accurately simulating the cloud albedo in climate models.


Author(s):  
Zeinab Takbiri ◽  
Lisa Milani ◽  
Clement Guilloteau ◽  
Efi Foufoula-Georgiou

Falling snow alters its own microwave signatures when it begins to accumulate on the ground making retrieval of precipitation challenging. This paper investigates the effects of snow-cover depth and cloud liquid water content on microwave signatures of terrestrial snowfall using reanalysis data and multi-annual measurements by the Global Precipitation Measurement (GPM) core satellite with particular emphasis on the 89 and 166 GHz channels. It is found that over snow cover shallower than 10 cm and low values of cloud liquid water path (LWP &le;125gm&minus;2), the scattering of light snowfall (&amp;lt;0.5mmh&minus;1) is detectable only at frequency 166 GHz while for higher intensities the signal can be also detected at 89 GHz. However, when snow depth exceeds &sim;20 cm and the LWP is greater than &sim;125gm&minus;2 , the emission from the increased liquid water content in snowing clouds becomes the only surrogate microwave signal of snowfall that is stronger at frequency 89 GHz than 166 GHz. The results also reveal that over high latitudes above 60∘ N where the snow cover is thicker than 20 cm and LWP is lower than 125 gm&minus;2 the microwave snowfall signal could not be detected with GPM. Our results provide quantitative insights for improving retrieval of snowfall in particular over snow-covered terrain.


Author(s):  
Xin Li ◽  
Xiaolei Zou ◽  
Mingjian Zeng ◽  
Ning Wang ◽  
Fei Tang

AbstractAimed at improving all-sky Cross-track Infrared Sounder (CrIS) radiance assimilation, this study explores the benefits for CrIS all-sky radiance simulations, focusing on the accuracy of background cloud information, through assimilating cloud liquid water path (LWP), ice water path (IWP), and rain water path (RWP) data retrieved from the Advanced Technology Microwave Sounder (ATMS). The Community Radiative Transfer Model (CRTM), which considers cloud scattering and absorption processes, is applied to simulate CrIS radiances. The Gridpoint Statistical Interpolation ensemble-variational data assimilation (DA) is updated by incorporating ensemble covariances of hydrometeor variables and observation operators of LWP, IWP, and RWP. First, two DA experiments named DActrl and DAcwp are conducted with (DAcwp) and without (DActrl) assimilating ATMS LWP, IWP, and RWP data. Assimilating ATMS cloud retrieval data results in better spatial distributions of hydrometers for both a Meiyu rainfall case and a typhoon case. Analyses of DActrl and DAcwp are then used as input to the CRTM to generate CrIS all-sky radiance simulations SMallsky_DActrl and SMallsky_DAcwp, respectively. Improvements in the DAcwp analyses of hydrometeor variables are found to benefit CrIS radiance simulations, especially in cloudy regions. A long period of statistics reveals that the biases and standard deviations of all-sky observations minus simulations from SMallsky_DAcwp are notably smaller than those from SMallsky_DActrl. This pilot study suggests the potential benefit of combining the use of microwave cloud retrieval products for all-sky infrared DA.


2021 ◽  
Author(s):  
Bida Jian ◽  
Jiming Li ◽  
Guoyin Wang ◽  
Yuxin Zhao ◽  
Yarong Li ◽  
...  

Abstract. The cloud albedo at the subtropical marine subtropical stratocumulus regions has a key role in regulating the regional energy budget. Based on 12 years of monthly data from multiple satellite datasets, the long-term, monthly and seasonal cycle averaged cloud albedo at five stratocumulus regions were investigated to inter-compare the atmosphere-only simulations of Phase 5 and 6 of the Coupled Model Inter-comparison Project (AMIP5 and AMIP6). Statistical results showed that the long-term regressed cloud albedos were underestimated in most AMIP6 models compared with the satellite-driven cloud albedos, and the AMIP6 models produced a similar spread of AMIP5 at all regions. The monthly mean and seasonal cycle of cloud albedo of AMIP6 ensemble mean showed better correlation with the satellite-driven observation than that of AMIP5 ensemble mean, however, fail to reproduce the values and amplitude in some regions. By employing the Modern-Era Retrospective Analysis for Research and Applications Version 2 data, this study estimated the relative contributions of different aerosols and meteorological factors on the marine stratocumulus cloud albedo under different cloud liquid water path (LWP) conditions. The multiple regression models can explain ~60 % of the changes in the cloud albedo. Under the monthly mean LWP ≤ 60 g m−2, dust and black carbon dominantly contributed to the changes in the cloud albedo, while sulfate aerosol contributed the most under the condition of 60 g m−2 


2020 ◽  
Vol 33 (23) ◽  
pp. 9967-9983
Author(s):  
Daniel T. McCoy ◽  
Paul Field ◽  
Alejandro Bodas-Salcedo ◽  
Gregory S. Elsaesser ◽  
Mark D. Zelinka

AbstractThe extratropical shortwave (SW) cloud feedback is primarily due to increases in extratropical liquid cloud extent and optical depth. Here, we examine the response of extratropical (35°–75°) marine cloud liquid water path (LWP) to a uniform 4-K increase in sea surface temperature (SST) in global climate models (GCMs) from phase 5 of the Coupled Model Intercomparison Project (CMIP5) and variants of the HadGEM3-GC3.1 GCM. Compositing is used to partition data into periods inside and out of cyclones. The response of extratropical LWP to a uniform SST increase and associated atmospheric response varies substantially among GCMs, but the sensitivity of LWP to cloud controlling factors (CCFs) is qualitatively similar. When all other predictors are held constant, increasing moisture flux drives an increase in LWP. Increasing SST, holding all other predictors fixed, leads to a decrease in LWP. The combinations of these changes lead to LWP, and by extension reflected SW, increasing with warming in both hemispheres. Observations predict an increase in reflected SW over oceans of 0.8–1.6 W m−2 per kelvin SST increase (35°–75°N) and 1.2–1.9 W m−2 per kelvin SST increase (35°–75°S). This increase in reflected SW is mainly due to increased moisture convergence into cyclones because of increasing available moisture. The efficiency at which converging moisture is converted into precipitation determines the amount of liquid cloud. Thus, cyclone precipitation processes are critical to constraining extratropical cloud feedbacks.


Sign in / Sign up

Export Citation Format

Share Document