liquid water path
Recently Published Documents


TOTAL DOCUMENTS

568
(FIVE YEARS 171)

H-INDEX

50
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Vladimir Kostsov ◽  
Dmitry Ionov ◽  
Anke Kniffka

Abstract. Combined zenith and off-zenith ground-based observations by modern microwave radiometers provide an opportunity to study horizontal inhomogeneities of the humidity field in the troposphere and of the cloud liquid water path (LWP) spatial distribution. However, practical applications are difficult and require thorough analysis of the information content of measurements, assessment of errors of data processing algorithm and the development of the quality control procedures. In this study we analyse the application of our LWP retrieval algorithm based on the inversion of the radiative transfer equation to the problem of detection of the LWP horizontal inhomogeneities by means of ground-based microwave observations in the vicinity of a coastline of a water object of medium size. The study is based on data acquired by the microwave radiometer RPG-HATPRO which is located in the suburbs of St.Petersburg, Russia, at 2.5 km distance from the coastline of the Neva Bay (the Gulf of Finland) and is operating in angular scanning mode in the vertical plane. The retrieval setup is organised in such a way that zenith and off-zenith measurements provide equal sensitivity to atmospheric parameters. The optimal elevation angles for off-zenith observations are selected. The possibility to detect LWP horizontal inhomogeneity, namely the LWP land-sea contrast, for different measurement geometries (elevation angles) and values of cloud base height is analysed. It is shown that ground-based microwave observations in the vicinity of a coastline can be a valuable tool for validation of the space-borne measurements of the LWP land-sea contrast if three principal requirements are met: (a) the multi-parameter physical inversion method is used for retrieving LWP; (b) rigorous bias correction and quality control procedures are applied to the retrieval results; (c) the information on the cloud base height is available. As a result of processing the microwave measurements at the observational site of St.Petersburg State University, the monthly-averaged values of the LWP land-sea difference have been obtained for summer months within the period 2013–2021. For 24 out of 25 months of high quality observations, the LWP land-sea monthly difference is positive (larger values over land and smaller values over water) and can reach 0.06–0.07 kg m−2. The estimations of the LWP land-sea contrast obtained from the ground-based microwave measurements at the observational site of St.Petersburg University are in very good agreement with the values of the LWP land-sea contrast obtained from the multi-year space-borne measurements by the SEVIRI instrument (Spinning Enhanced Visible and InfraRed Imager) in the region of the Neva Bay (the Gulf of Finland) in June and July. For August, the so-called “August anomaly” detected by space-borne observations is not confirmed by the ground-based measurements.


2022 ◽  
Vol 14 (1) ◽  
pp. 33-55
Author(s):  
Claudia Acquistapace ◽  
Richard Coulter ◽  
Susanne Crewell ◽  
Albert Garcia-Benadi ◽  
Rosa Gierens ◽  
...  

Abstract. As part of the EUREC4A field campaign, the research vessel Maria S. Merian probed an oceanic region between 6 to 13.8∘ N and 51 to 60∘ W for approximately 32 d. Trade wind cumulus clouds were sampled in the trade wind alley region east of Barbados as well as in the transition region between the trades and the intertropical convergence zone, where the ship crossed some mesoscale oceanic eddies. We collected continuous observations of cloud and precipitation profiles at unprecedented vertical resolution (7–10 m in the first 3000 m) and high temporal resolution (1–3 s) using a W-band radar and micro rain radar (MRR), installed on an active stabilization platform to reduce the impact of ship motions on the observations. The paper describes the ship motion correction algorithm applied to the Doppler observations to extract corrected hydrometeor vertical velocities and the algorithm created to filter interference patterns in the MRR observations. Radar reflectivity, mean Doppler velocity, spectral width and skewness for W-band and reflectivity, mean Doppler velocity, and rain rate for MRR are shown for a case study to demonstrate the potential of the high resolution adopted. As non-standard analysis, we also retrieved and provided liquid water path (LWP) from the 89 GHz passive channel available on the W-band radar system. All datasets and hourly and daily quicklooks are publically available, and DOIs can be found in the data availability section of this publication. Data can be accessed and basic variables can be plotted online via the intake catalog of the online book “How to EUREC4A”.


2022 ◽  
pp. 1-48
Author(s):  
Yi Ming

Abstract A negative shortwave cloud feedback associated with higher extratropical liquid water content in mixed-phase clouds is a common feature of global warming simulations, and multiple mechanisms have been hypothesized. A set of process-level experiments performed with an idealized global climate model (a dynamical core with passive water and cloud tracers and full Rotstayn-Klein single-moment microphysics) show that the common picture of the liquid water path (LWP) feedback in mixed-phase clouds being controlled by the amount of ice susceptible to phase change is not robust. Dynamic condensate processes—rather than static phase partitioning—directly change with warming, with varied impacts on liquid and ice amounts. Here, three principal mechanisms are responsible for the LWP response, namely higher adiabatic cloud water content, weaker liquid-to-ice conversion through the Bergeron-Findeisen process, and faster melting of ice and snow to rain. Only melting is accompanied by a substantial loss of ice, while the adiabatic cloud water content increase gives rise to a net increase in ice water path (IWP) such that total cloud water also increases without an accompanying decrease in precipitation efficiency. Perturbed parameter experiments with a wide range of climatological LWP and IWP demonstrate a strong dependence of the LWP feedback on the climatological LWP and independence from the climatological IWP and supercooled liquid fraction. This idealized setup allows for a clean isolation of mechanisms and paints a more nuanced picture of the extratropical mixed-phase cloud water feedback than simple phase change.


2021 ◽  
Vol 14 (1) ◽  
pp. 152
Author(s):  
Xiaoyi Zheng ◽  
Yuanjian Yang ◽  
Ye Yuan ◽  
Yanan Cao ◽  
Jinlan Gao

The macro- and microphysical properties of clouds can reflect their vertical physical structure and evolution and are important indications of the formation and development of precipitation. We used four-year merged CloudSat-CALIPSO-MODIS products to distinguish the macro- and microphysical properties of precipitating and non-precipitating clouds over central-eastern China during the warm season (May–September). Our results showed that the clouds were dominated by single- and double-layer forms with occurrence frequencies > 85%. Clouds with a low probability of precipitation (POP) were usually geometrically thin. The POP showed an increasing trend with increases in the cloud optical depth, liquid water path, and ice water path, reaching maxima of 50%, 60%, and 75%, respectively. However, as cloud effective radius (CER) increased, the POP changed from an increasing to a decreasing trend for a CER > 22 μm, in contrast with our perception that large particles fall more easily against updrafts, but this shift can be attributed to the transition of the cloud phase from mixed clouds to ice clouds. A high POP > 60% usually occurred in mixed clouds with vigorous ice-phase processes. There were clear differences in the microphysical properties of non-precipitating and precipitating clouds. In contrast with the vertical evolution of non-precipitating clouds with weaker reflectivity, precipitating clouds were present above 0 dBZ with a significant downward increase in reflectivity, suggesting inherent differences in cloud dynamical and microphysical processes. Our findings highlight the differences in the POP of warm and mixed clouds, suggesting that the low frequency of precipitation from water clouds should be the focus of future studies.


2021 ◽  
Vol 13 (24) ◽  
pp. 5179
Author(s):  
Chiao-Wei Chang ◽  
Wei-Ting Chen ◽  
Yi-Chun Chen

We constructed the A-Train co-located aerosol and marine warm cloud data from 2006 to 2010 winter and spring over East Asia and investigated the sensitivities of single-layer warm cloud properties to aerosols under different precipitation statuses and environmental regimes. The near-surface stability (NSS), modulated by cold air on top of a warm surface, and the estimated inversion strength (EIS) controlled by the subsidence are critical environmental parameters affecting the marine warm cloud structure over East Asia and, thus, the aerosols–cloud interactions. Based on our analysis, precipitating clouds revealed higher cloud susceptibility to aerosols as compared to non-precipitating clouds. The cloud liquid water path (LWP) increased with aerosols for precipitating clouds, yet decreased with aerosols for non-precipitating clouds, consistent with previous studies. For precipitating clouds, the cloud LWP and albedo increased more under higher NSS as unstable air promotes more moisture flux from the ocean. Under stronger EIS, the cloud albedo response to aerosols was lower than that under weaker EIS, indicating that stronger subsidence weakens the cloud susceptibility due to more entrainment drying. Our study suggests that the critical environmental factors governing the aerosol–cloud interactions may vary for different oceanic regions, depending on the thermodynamic conditions.


2021 ◽  
Author(s):  
Sudhakar Dipu ◽  
Matthias Schwarz ◽  
Annica Ekman ◽  
Edward Gryspeerdt ◽  
Tom Goren ◽  
...  

<div class="page" title="Page 1"> <div class="layoutArea"> <div class="column"> <p>Important aspects of the adjustments to aerosol-cloud interactions can be examined using the relationship between cloud droplet number concentration (Nd) and liquid water path (LWP). Specifically, this relation can constrain the role of aerosols in leading to thicker or thinner clouds in response to adjustment mechanisms. This study investigates the satellite retrieved relationship between Nd and LWP for a selected case of mid-latitude continental clouds using high-resolution Large-eddy simulations (LES) over a large domain in weather prediction mode. Since the satellite retrieval uses adiabatic assumption to derive the Nd (NAd), we have also considered NAd from the LES model for comparison. The NAd-LWP relationship in the satellite and the LES model show similar, generally positive, but non-monotonic relations. This case over continent thus behaves differently compared to previously-published analysis of oceanic clouds, and the analysis illustrates a regime dependency (marine and continental) in the NAd-LWP relation in the satellite retrievals. The study further explores the impact of the satellite retrieval assumptions on the Nd-LWP relationship. When considering the relationship of the actually simulated cloud-top Nd, rather than NAd, with LWP, the result shows a much more nonlinear relationship. The difference is much less pronounced, however, for shallow stratiform than for convective clouds. Comparing local vs large-scale statistics from satellite data shows that continental clouds exhibit only a weak nonlinear Nd-LWP relationship. Hence a regime based Nd-LWP analysis is even more relevant when it comes to continental clouds.</p> </div> </div> </div>


2021 ◽  
Author(s):  
Mahnoosh Haghighatnasab ◽  
Johannes Quass

<p>Since increased anthropogenic aerosol result in an enhancement in cloud droplet number concentration, cloud and precipitation process are modified. It is unclear how exactly cloud liquid water path (LWP) and cloud fraction respond to aerosol perturbations. A large volcanic eruption may help to better understand and quantify the cloud response to external perturbations, with a focus on the short-term cloud adjustments . Volcloud is one of the research projects in the Vollmpact collaborative German research unit which aims to the improve understanding of how the climate system responds to volcanic eruptions. This includes skills in satellite remote sensing of atmospheric composition, stratospheric aerosol parameters and clouds as well as in modelling of aerosol microphysical and cloud processes, and in climate modelling. The goal of VolCloud is to understand and quantify the response of clouds to volcanic eruptions and to thereby advance the fundamental understanding of the cloud response to external forcing, particularly aerosol-cloud interactions. In this study we used ICON-NWP atmospheric model at a cloud-system-resolving resolution of 2.5 km horizontally, to simulate the region around the Holuhraun volcano for the duration of one week (1 – 7 September 2014). The pair of simulations, with and without the volcanic aerosol emissions allowed us to assess the simulated effective radiative forcing and its mechanisms as well as its impact on adjustments of cloud liquid water path and cloud fraction to the perturbations of cloud droplet number concentration. In this case studies liquid water path positively correlates with enhanced cloud droplet concentration.</p>


2021 ◽  
Author(s):  
Moritz Löffler ◽  
Christine Knist ◽  
Jasmin Vural ◽  
Annika Schomburg ◽  
Volker Lehmann ◽  
...  

<p>The project “Pilotstation” at DWD employs a test bed setup to assess data availability, quality, observation impact and operational sustainability for five different ground based remote sensing instruments. The instruments in question, also referred to as “profilers”, are designed to continuously measure vertical profiles of thermodynamic and cloud/aerosol related variables.</p> <p>A ground based microwave radiometer (MWR) is one of the instruments evaluated in the project “Pilotstation”. MWR primarily measure downwelling radiation in the K-band and V-band in the form of brightness temperatures (TB). All-sky temperature and low-resolution humidity profiles as well as high-accuracy liquid water path (LWP, ΔLWP: ± 10-20 gm<sup>-2</sup>) and integrated water vapour (IWV, ΔIWV: ~ ± 0.5 kgm<sup>-2</sup>) are secondary products, which can be derived from the TB.</p> <p>The adaptation of the fast radiative transfer model RTTOV for ground based instruments enabled weather services to go forward with directly assimilating MWR TB rather than secondary products. First assimilation experiments of MWR TB at DWD were successful. Alongside other quality checks, the data assimilation (DA) relies on a cloud detection beforehand. The most frequent reason for rejecting data from DA is the suspected presence of clouds, consequently reliably identifying clouds without excessively rejecting clear-sky data is especially important for a high availability of suitable data.</p> <p>The study presented focuses on the requirements of operational DA and a stand-alone setup of an MWR. The work compares the performance of cloud detection algorithms used in scientific publications based on MWR observations. The comparisons include methods using TB, LWP and their variability. For this the CloudNet classification time series at Lindenberg and observation minus model background statistics serve as references. The presentation will also include progress made on refining the cloud detection schemes at hand in order to achieve a higher precision and to better meet the requirements of DA.</p>


2021 ◽  
Author(s):  
Hannes Griesche ◽  
Carola Barrientos Velasco ◽  
Patric Seifert

<p>The observation of low-level stratocumulus cloud decks in the Arctic poses challenges to ground-based remote sensing. These clouds frequently occur during summer below the lowest range gate of common zenith-pointing cloud radar instruments, like the KAZR and the Mira-35. In addition, the optical thickness of these low-level clouds often do cause a complete attenuation of the lidar beam. For remote-sensing instrument synergy retrievals, as Cloudnet (Illingworth, 2007) or ARSCL (Active Remote Sensing of Clouds, Shupe, 2007), liquid-water detection in clouds is usually based on lidar backscatter. Thus, a complete attenuation can cause misclassification of mixed-phase clouds as pure-ice clouds. Moreover, the missing cloud radar information makes it difficult to derive the cloud microphysical properties, as most common retrievals are based on cloud radar reflectivity.</p> <p>A new low-level stratus detection mask (Griesche, 2020) was used to detect these clouds. The liquid-water cloud microphysical properties were derived by a simple but effective analysis of the liquid-water path. This approach was applied to remote-sensing data from a shipborne expedition performed in the Arctic summer 2017. The values calculated by applying the adjusted method improve the results of radiative transfer simulations yielding the determination of radiative closure.</p> <p> </p> <p> </p> <p>Illingworth et al. (2007). “Cloudnet”. BAMS.</p> <p>Shupe (2007). “A ground-based multisensor cloud phase classifier”. GRL.</p> <p>Griesche et al. (2020). “Application of the shipborne remote sensing supersite OCEANET for profiling of Arctic aerosols and clouds during Polarstern cruise PS106”. AMT.</p>


Sign in / Sign up

Export Citation Format

Share Document