cloud thickness
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 14)

H-INDEX

18
(FIVE YEARS 1)

Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1415
Author(s):  
Xianjie Cao ◽  
Gefei Lu ◽  
Mengqi Li ◽  
Jiayun Wang

The macroscopic characteristics of clouds over Lanzhou, China were investigated using micro-pulse lidar data from September 2005 to November 2011. The results show that the mean of the cloud base height, cloud peak height, cloud top height and cloud thickness during the observation was 4.03 km, 4.81 km, 5.50 km and 1.47 km, respectively; the maximum frequency of the cloud base height, cloud peak height, cloud top height and cloud thickness was 25.7% in the range of 1–2 km, 16.2% in the range of 2–3 km, 14.6% in the range of 2–3 km and 42.2% in the range of 1–2 km, respectively; the maximum frequency of cloud base height was 24.2%, 24.6%, 29.7% and 21.4% in spring, summer, autumn and winter, respectively, all in the range of 1–2 km, and middle clouds occurred most frequently at 41.4%, followed by low clouds (33.7%) and high clouds (24.9%) during the observation period; the maximum frequency of cloud peak height was 15.8% in the range of 3–4 km, 18% in the range of 4–5 km, 20% in the range of 2–3 km in autumn and 18.6% in the range of 5–6 km in winter; the maximum frequency of cloud top height was 14% in the range of 3–4 km in spring, 16% in the range of 4–5 km in summer, 20.1% in the range of 2–3 km in autumn and 17.8% in the range of 7–8 km in winter; the maximum frequency of cloud thickness was 44.9%, 35.6% and 52% in the range of 1–2 km in spring, summer and winter, respectively, while it was 44.9% in the range of 0–1 km in autumn; the cloud thickness was mostly less than 3 km; generally, the thicker of cloud, the less the frequency.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Yong Han ◽  
Hao Luo ◽  
Yonghua Wu ◽  
Yijun Zhang ◽  
Wenjie Dong

AbstractLightning flash rate is strongly influenced by cloud microphysics, such as cloud ice properties, but this relationship is poorly constrained. Here we analyze 20 years of satellite-derived lightning flash rate data and cloud water data from the ERA-Interim reanalysis above continental and ocean regions at a global scale. We find a robust modified gamma function relationship between cloud ice fraction and lightning rate. Lightning rate increases initially with increasing cloud ice fraction in stratocumulus, liquid clouds. Maximum flash rates are reached at a critical cloud ice fraction value that is associated with high top, large optical thickness, deep convective clouds. Beyond the critical value, lightning rate decreases as the ice fraction increases to values representative of cirrus, ice clouds. We find consistent critical ice fraction values over continental and oceanic regions, respectively, with a lower value over the continent due to greater cloud thickness at similar cloud top height. We suggest that our findings may help improve the accuracy of lightning forecast and hazard prediction.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Pengguo Zhao ◽  
Hui Xiao ◽  
Chang Liu ◽  
Yunjun Zhou

The effects of thermodynamic and moisture factors on cloud-to-ground (CG) lightning polarity in the warm season were discussed. Small convective available potential energy (CAPE) represents relatively shallow convection, which is beneficial to the generation of positive lightning. Large vertical wind shear results in the displacement of upper-level positive ice crystals and promotes the initiation of +CG lightning from positive ice crystals. The dry low- to midlevel troposphere and the high cloud base in the plateau region favor +CG lightning, while the strong thermodynamic conditions in the basin region offset the influence of these moisture factors. In the plateau region, due to the limited cloud thickness, high total column liquid water may mean high cloud water content in the warm cloud region rather than high liquid water content in the mixed-phase region, which is unfavorable for the middle-level positive graupel and thus is unfavorable for the initiation of +CG lightning. In the basin region, the cloud thickness is relatively thicker, the high total column liquid water means that the liquid water content in the warm cloud and the mixed-phase region is both high, which is conducive to the middle-level positive graupel and the +CG lightning.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 648
Author(s):  
Qing Li ◽  
Ming Wei ◽  
Zhenhui Wang ◽  
Sulin Jiang ◽  
Yanli Chu

Atmospheric temperature and humidity retrievals from ground-based microwave remote sensing are useful in a variety of meteorological and environmental applications. Though the influence of clouds is usually considered in current retrieval algorithms, the resulting temperature and humidity estimates are still biased high in overcast conditions compared to radiosonde observations. Therefore, there is a need to improve the quality of retrievals in cloudy conditions. This paper presents an approach to make brightness temperature (TB) correction for cloud influence before the data can be used in the inversion of vertical profiles of atmospheric temperature and humidity. A three-channel method is proposed to make cloud parameter estimation, i.e., of the total 22 channels of the ground-based radiometer, three are adopted to set up a relationship between cloud parameters and brightness temperatures, so that the observations from the three channels can be used to estimate cloud thickness and water content and complete the cloud correction for the rest of the channels used in the retrieval. Based on two years of data from the atmosphere in Beijing, a comparison of the retrievals with radiosonde observations (RAOB) shows: (1) the temperature retrievals from this study have a higher correlation with RAOB and are notably better than in the vendor-provided LV2. The bias of the temperature retrievals from this study is close to zero at all heights, and the RMSE is greatly reduced from >5 °C to <2 °C in the layer, from about 1.5 km up to 5 km. The temperature retrievals from this study have higher correlation with RAOB data compared to the vendor-provided LV2, especially at and above a 2 km height. (2) The bias of the water vapor density profile from this study is near to zero, while the LV2 has a positive bias as large as 4 g/m3. The RMSE of the water vapor density profile from this study is <2 g/m3, while the RMSE for LV2 is as large as 10 g/m3. That is, both the bias and RMSE from this study are evidently less than the LV2, with a greater improvement in the lower troposphere below 5 km. Correlation with RAOB is improved even more for the water vapor density. The correlation of the retrievals from this study increases to one within the boundary layer, but the correlation of LV2 with RAOB is only 0.8 at 0.5 km height, 0.7 at 1 km, and even less than 0.5 at 2 km. (3) A parameter named the Cloud Impact index, determined by cloud water concentration and cloud thickness, together with the cloud base height, has been defined to show that both BIAS and RMSE of “high-CI subsample” are larger than those of the “low-CI subsample”, indicating that high-CI cloud has a higher impact on the retrievals and the correction for cloud influence is more necessary.


2021 ◽  
Author(s):  
Claudia Mignani ◽  
Lukas Zimmermann ◽  
Rigel Kivi ◽  
Alexis Berne ◽  
Franz Conen

&lt;p&gt;Crystal habits encode atmospheric conditions. Temperature and relative humidity with respect to ice and liquid water are the microphysical drivers of the growth of snow crystals in terms of shape, size and degree of riming, while cloud thickness and the related growth time of crystals are the dynamical drivers. According to current versions of Nakaya&amp;#8217;s habit diagram, rather large and eventually rimed crystals are formed above supersaturation. Below supersaturation compact and unrimed snow crystals are to be expected. In this study, we combine radiosonde profiles with snowflake images captured at the surface by a multi-angle snowflake camera during two-and-a-half winter seasons in Northern Finland (67.367 &amp;#176;N, 26.629 &amp;#176;E). Our objective is to quantify how well crystal habits correspond with what would be expected from radiosonde profiles at this continental site in the Arctic.&lt;/p&gt;


2020 ◽  
Vol 77 (8) ◽  
pp. 2717-2741
Author(s):  
Mónica Zamora Zapata ◽  
Joel R. Norris ◽  
Jan Kleissl

Abstract The impact of initial states and meteorological variables on stratocumulus cloud dissipation time over coastal land is investigated using a mixed-layer model. A large set of realistic initial conditions and forcing parameters are derived from radiosonde observations and numerical weather prediction model outputs, including total water mixing ratio and liquid water potential temperature profiles (within the boundary layer, across the capping inversion, and at 3 km), inversion-base height and cloud thickness, large-scale divergence, wind speed, Bowen ratio, sea surface fluxes, sky effective radiative temperature, shortwave irradiance above the cloud, and sea level pressure. We study the sensitivity of predicted dissipation time using two analyses. In the first, we simulate 195 cloudy days (all variables covary as observed in nature). We caution that simulated predictions correlate only weakly to observations of dissipation time, but the simulation approach is robust and facilitates covariability testing. In the second, a single variable is varied around an idealized reference case. While both analyses agree in that initial conditions influence dissipation time more than forcing parameters, some results with covariability differ greatly from the more traditional sensitivity analysis and with previous studies: opposing trends are observed for boundary layer total water mixing ratio and Bowen ratio, and covariability diminishes the sensitivity to cloud thickness and inversion height by a factor of 5. With covariability, the most important features extending predicted cloud lifetime are (i) initially thicker clouds, higher inversion height, and stronger temperature inversion jumps, and (ii) boundary forcings of lower sky effective radiative temperature.


2020 ◽  
Author(s):  
Adeyemi A. Adebiyi ◽  
Paquita Zuidema ◽  
Ian Chang ◽  
Sharon P. Burton

Abstract. Shortwave-absorbing aerosols seasonally overlay extensive low-level stratocumulus clouds over the southeast Atlantic. While a lot of attention has been focused on the interactions between the low-level clouds and the overlying aerosols, no study has yet focused on the mid-level clouds that also occur over the region. The presence of mid-level clouds over the region complicates the attribution of the cloud radiation budget, as well as of space-based remote-sensing retrievals. Here we characterize the mid-level clouds over the southeast Atlantic using lidar- and radar-based satellite cloud retrievals in addition to the observations collected in September 2016 during the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) field campaign. We find that the mid-level clouds over the southeast Atlantic are relatively common, with the overwhelming majority of the cloud occurring between altitudes of 5 and 7 km and temperatures of 0 and −20 °C. These clouds occur at the top of a moist mid-tropospheric smoke aerosol layer, most frequently between August and October, closer to the southern African coast than farther offshore, and more frequently during the night than during the day. Between July and October, we find that about 64 % of the mid-level clouds have a geometric cloud thickness less than 1 km, and about 60 % have a cloud optical depth less than 4. Using the lidar-based depolarization–backscatter relationship for September 2016, we find that the mid-level clouds are liquid-only clouds with no evidence of the existence of ice. Furthermore, we also find that these clouds are mostly associated with synoptically-modulated mid-tropospheric moisture outflow that can be linked to the detrainment from the continental-based clouds. Overall, the presence of these supercooled mid-level clouds influences the regional cloud radiative budget by reducing the radiative cooling rates by about 10 K/day near the top of the more-dominant low-level clouds.


2020 ◽  
Author(s):  
Jing Sun

&lt;p&gt;Two tests of aircraft icing observations were conducted on March 2018 in Xin Jiang in northwest of China. The icing conditions are studied using observations of satellite, radar, soundings and simulations using the WRF mesoscale model coupled with CAMS cloud scheme. The large-scale weather systems of the two icing cases are the vortex and the shallow trough on 500hPa separately, accompanied by the cold front on the surface. The icing time is in the early stage of vortex system and the middle stage of shallow trough system. The icing clouds are both low and middle clouds. The cloud top height is 4km and the cloud top temperature is -15~-25&amp;#8451;. The cloud bottom height is 1.5km and the cloud thickness is 1-3km. The optical thickness is larger than 12 and the radar reflectivity is less than 10dBZ. There is an inversion layer of the shallow trough. The microphysical structures of CPEFS model simulations show that the icing cloud is composed of large number of supercooled water and few ice particles. The CIP initial icing potential results can basically reflect the icing height and time of the two cases.&lt;/p&gt;


2020 ◽  
Vol 493 (4) ◽  
pp. 5153-5161
Author(s):  
Gargi Shaw ◽  
G J Ferland

ABSTRACT The gamma-ray burst (GRB) afterglows provide a unique opportunity to study the interstellar medium (ISM) of star-forming galaxies at high-redshift. The GRB-DLAs (damped Lyman-α absorbers) contain a large neutral hydrogen column density, N(H i), and are observed against the GRB afterglow. A large fraction of GRB-DLAs show presence of molecular hydrogen (H2) which is an indicator of star-formation. Hence it is important to study those GRB-DLAs which have H2 lines to decipher and understand their physical conditions. The GRB-DLAs 121024A and 120815A, situated at redshift 2.30 and 2.36, respectively, are two such important H2-bearing GRB-DLAs. Besides H2, these two GRB-DLAs also show many metal lines. In this work we have carried out a detail numerical study on the H2 lines, as well as on those metal lines, in GRB-DLAs 121024A and 120815A self-consistently. We use the spectral synthesis code cloudy for this study. This modelling helps us to determine the underlying physical conditions which give rise to such lines and hence to understand these two GRB-DLAs in much more detail than any other previous investigation. We find that the hydrogen densities for these two H2-bearing DLAs are ≥60 cm−3. Moreover our study infers that the linear sizes are ≤17.7 pc for these two GRB-DLAs, and the mean gas temperatures averaged over the cloud thickness, are ≤140 K. Overall, we find that these two H2-bearing GRB-DLAs are denser, cooler, and smaller compared to those without H2.


Sign in / Sign up

Export Citation Format

Share Document